Integrating Quantum, Deep, and Classic Features with Attention-Guided AdaBoost for Medical Risk Prediction

Authors

  • Muh Galuh Surya Putra Kusuma Universitas Dian Nuswantoro
  • De Rosal Ignatius Moses Setiadi Universitas Dian Nuswantoro https://orcid.org/0000-0001-6615-4457
  • Wise Herowati Universitas Dian Nuswantoro
  • T. Sutojo Universitas Dian Nuswantoro
  • Prajanto Wahyu Adi Universitas Diponegoro
  • Pushan Kumar Dutta Amity University Kolkata
  • Minh T. Nguyen Thai Nguyen University

DOI:

https://doi.org/10.62411/jcta.14873

Keywords:

AdaBoost, Attention Mechanism, Deep Learning, Feature Fusion, Medical Diagnosis, Quantum Machine Learning, Structured Data, Unsupervised LSTM

Abstract

Chronic diseases such as chronic kidney disease (CKD), diabetes, and heart disease remain major causes of mortality worldwide, highlighting the need for accurate and interpretable diagnostic models. However, conventional machine learning methods often face challenges of limited generalization, feature redundancy, and class imbalance in medical datasets. This study proposes an integrated classification framework that unifies three complementary feature paradigms: classical tabular attributes, deep latent features extracted through an unsupervised Long Short-Term Memory (LSTM) encoder, and quantum-inspired features derived from a five-qubit circuit implemented in PennyLane. These heterogeneous features are fused using a feature-wise attention mechanism combined with an AdaBoost classifier to dynamically weight feature contributions and enhance decision boundaries. Experiments were conducted on three benchmark medical datasets—CKD, early-stage diabetes, and heart disease—under both balanced and imbalanced configurations using stratified five-fold cross-validation. All preprocessing and feature extraction steps were carefully isolated within each fold to ensure fair evaluation. The proposed hybrid model consistently outperformed conventional and ensemble baselines, achieving peak accuracies of 99.75% (CKD), 96.73% (diabetes), and 91.40% (heart disease) with corresponding ROC AUCs up to 1.00. Ablation analyses confirmed that attention-based fusion substantially improved both accuracy and recall, particularly under imbalanced conditions, while SMOTE contributed minimally once feature-level optimization was applied. Overall, the attention-guided AdaBoost framework provides a robust and interpretable approach for clinical risk prediction, demonstrating that integrating diverse quantum, deep, and classical representations can significantly enhance feature discriminability and model reliability in structured medical data.

Author Biographies

Muh Galuh Surya Putra Kusuma, Universitas Dian Nuswantoro

Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang 50131, Indonesia

De Rosal Ignatius Moses Setiadi, Universitas Dian Nuswantoro

Research Group for Quantum Computing and Materials Informatics, Universitas Dian Nuswantoro, Semarang 50131, Indonesia

Wise Herowati, Universitas Dian Nuswantoro

Research Group for Quantum Computing and Materials Informatics, Universitas Dian Nuswantoro, Semarang 50131, Indonesia

T. Sutojo, Universitas Dian Nuswantoro

Research Group for Quantum Computing and Materials Informatics, Universitas Dian Nuswantoro, Semarang 50131, Indonesia

Prajanto Wahyu Adi, Universitas Diponegoro

Department of Informatics, Universitas Diponegoro, Semarang 50275, Indonesia

Pushan Kumar Dutta, Amity University Kolkata

School of Engineering and Technology, Amity University Kolkata, Kolkata 700135, West Bengal, India

Minh T. Nguyen, Thai Nguyen University

Thai Nguyen University of Technology, Thai Nguyen University, Thai Nguyen 240000, Viet Nam

References

R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for healthcare: review, opportunities and challenges,” Brief. Bioinform., vol. 19, no. 6, pp. 1236–1246, Nov. 2018, doi: 10.1093/bib/bbx044.

D. S. Stamoulis and C. Papachristopoulou, “Artificial Intelligence in Radiology, Emergency, and Remote Healthcare: A Snapshot of Present and Future Applications,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 228–234, Oct. 2024, doi: 10.62411/faith.3048-3719-38.

P. O. Adebayo, F. Basaky, and E. Osaghae, “Leveraging Variational Quantum-Classical Algorithms for Enhanced Lung Cancer Prediction,” J. Comput. Theor. Appl., vol. 2, no. 3, pp. 307–323, Dec. 2024, doi: 10.62411/jcta.10424.

V. D, S. M. Ramesh, S. K, T. K, S. N, and K. P, “A Machine Learning Perspective for Predicting Chronic Kidney Disease,” in 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), Jul. 2024, pp. 989–993. doi: 10.1109/ICSCSS60660.2024.10625341.

D. Swain et al., “A Robust Chronic Kidney Disease Classifier Using Machine Learning,” Electronics, vol. 12, no. 1, p. 212, Jan. 2023, doi: 10.3390/electronics12010212.

Reshma S, S. Shaji, S. R. Ajina, V. P. S. R, and J. A, “Chronic Kidney Disease Prediction using Machine Learning,” Int. J. Eng. Res., vol. V9, no. 07, Jul. 2020, doi: 10.17577/IJERTV9IS070092.

P. Chittora et al., “Prediction of Chronic Kidney Disease - A Machine Learning Perspective,” IEEE Access, vol. 9, pp. 17312–17334, 2021, doi: 10.1109/ACCESS.2021.3053763.

R. Asif, D. Upadhyay, M. Zaman, and S. Sampalli, “Enhancing Diabetes Risk Prediction: A Comparative Evaluation of Bagging, Boosting, and Ensemble Classifiers with Smote Oversampling.” 2025. doi: 10.2139/ssrn.5138371.

A. O. Eboka et al., “Resolving Data Imbalance Using a Bi-Directional Long-Short Term Memory for Enhanced Diabetes Mellitus Detection,” J. Futur. Artif. Intell. Technol., vol. 2, no. 1, pp. 95–109, May 2025, doi: 10.62411/faith.3048-3719-73.

A. Esteva et al., “A guide to deep learning in healthcare,” Nat. Med., vol. 25, no. 1, pp. 24–29, Jan. 2019, doi: 10.1038/s41591-018-0316-z.

R. Perumal and K. AC, “Early Prediction of Coronary Heart Disease from Cleveland Dataset using Machine Learning Techniques Ramya,” Int. J. Adv. Sci. Technol., vol. 29, no. 6, pp. 4225–4234, 2020.

C. Asuai, P. O. Ezzeh, H. Honi, A. A. Joseph-Brown, I. A. Merit, and I. Debekeme, “Enhancing DDoS Detection via 3ConFA Feature Fusion and 1D Convolutional Neural Networks,” J. Futur. Artif. Intell. Technol., vol. 2, no. 1, pp. 145–162, 2025, doi: 10.62411/faith.3048-3719-105.

B. Ghojogh and A. Ghodsi, “Recurrent Neural Networks and Long Short-Term Memory Networks: Tutorial and Survey,” arXiv. Apr. 22, 2023. [Online]. Available: http://arxiv.org/abs/2304.11461

G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term memory model,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5929–5955, Dec. 2020, doi: 10.1007/s10462-020-09838-1.

S. M. Al-Selwi et al., “RNN-LSTM: From applications to modeling techniques and beyond—Systematic review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 5, p. 102068, Jun. 2024, doi: 10.1016/j.jksuci.2024.102068.

N. I. Sitlong, A. E. Evwiekpaefe, and M. E. Irhebhude, “Hybrid Dynamic Programming Healthcare Cloud-Based Quality of Service Optimization,” J. Comput. Theor. Appl., vol. 3, no. 2, pp. 115–131, Sep. 2025, doi: 10.62411/jcta.14455.

T. A. Gaav, H. U. Adoga, and T. Moses, “Recent Advances in Credit Card Fraud Detection: An Analytical Review of Frameworks, Methodologies, Datasets, and Challenges,” J. Futur. Artif. Intell. Technol., vol. 2, no. 3, pp. 343–369, Sep. 2025, doi: 10.62411/faith.3048-3719-251.

S. Adamu, A. Iorliam, and Ö. Asilkan, “Exploring Explainability in Multi-Category Electronic Markets: A Comparison of Machine Learning and Deep Learning Approaches,” J. Futur. Artif. Intell. Technol., vol. 1, no. 4, pp. 440–454, Mar. 2025, doi: 10.62411/faith.3048-3719-58.

J. C. L. Chow, “Quantum Computing and Machine Learning in Medical Decision-Making: A Comprehensive Review,” Algorithms, vol. 18, no. 3, p. 156, Mar. 2025, doi: 10.3390/a18030156.

A. N. Safriandono, D. R. I. M. Setiadi, A. Dahlan, F. Z. Rahmanti, I. S. Wibisono, and A. A. Ojugo, “Analyzing Quantum Feature Engineering and Balancing Strategies Effect on Liver Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 51–63, Jun. 2024, doi: 10.62411/faith.2024-12.

D. R. I. M. Setiadi, A. Susanto, K. Nugroho, A. R. Muslikh, A. A. Ojugo, and H. Gan, “Rice Yield Forecasting Using Hybrid Quantum Deep Learning Model,” Computers, vol. 13, no. 8, p. 191, Aug. 2024, doi: 10.3390/computers13080191.

M. Akrom, W. Herowati, and D. R. I. M. Setiadi, “A Quantum Circuit Learning-based Investigation: A Case Study in Iris Benchmark Dataset Binary Classification,” J. Comput. Theor. Appl., vol. 2, no. 3, pp. 355–367, Jan. 2025, doi: 10.62411/jcta.11779.

S. M. Y. I. Tomal, A. Al Shafin, A. Afaf, and D. Bhattacharjee, “Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 284–295, Dec. 2024, doi: 10.62411/faith.3048-3719-48.

Škrlj Blaž, Džeroski Sašo, Lavrač Nada, and Petković Matej, “Feature Importance Estimation with Self-Attention Networks,” in Frontiers in Artificial Intelligence and Applications, 2020. doi: 10.3233/FAIA200256.

Y. Hao et al., “Feature-Level Deeper Self-Attention Network With Contrastive Learning for Sequential Recommendation,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 10, pp. 10112–10124, Oct. 2023, doi: 10.1109/TKDE.2023.3250463.

A. T. Gavito, D. Klabjan, and J. Utke, “Multi-Layer Attention-Based Explainability via Transformers for Tabular Data,” in 2024 International Conference on Machine Learning and Applications (ICMLA), Dec. 2024, pp. 25–32. doi: 10.1109/ICMLA61862.2024.00010.

P.-B. Zhang and Z.-X. Yang, “A Novel AdaBoost Framework With Robust Threshold and Structural Optimization,” IEEE Trans. Cybern., vol. 48, no. 1, pp. 64–76, Jan. 2018, doi: 10.1109/TCYB.2016.2623900.

Y. Ding, H. Zhu, R. Chen, and R. Li, “An Efficient AdaBoost Algorithm with the Multiple Thresholds Classification,” Appl. Sci., vol. 12, no. 12, p. 5872, Jun. 2022, doi: 10.3390/app12125872.

T. Sutojo, D. R. Ignatius, M. Setiadi, S. Rustad, W. Herowati, and M. Akrom, “Hybrid Quantum-Deep Learning Approach: Optimizing Land Cover Classification with GMM Outlier and Fusion Key Feature Selection,” Int. J. Intell. Eng. Syst., vol. 18, no. 1, pp. 638–648, Feb. 2025, doi: 10.22266/ijies2025.0229.45.

D. R. I. M. Setiadi et al., “Integrating Hybrid Statistical and Unsupervised LSTM-Guided Feature Extraction for Breast Cancer Detection,” J. Comput. Theor. Appl., vol. 2, no. 4, pp. 536–552, May 2025, doi: 10.62411/jcta.12698.

M. Schuld and N. Killoran, “Quantum Machine Learning in Feature Hilbert Spaces,” Phys. Rev. Lett., vol. 122, no. 4, p. 040504, Feb. 2019, doi: 10.1103/PhysRevLett.122.040504.

T. Goto, Q. H. Tran, and K. Nakajima, “Universal Approximation Property of Quantum Machine Learning Models in Quantum-Enhanced Feature Spaces,” Phys. Rev. Lett., vol. 127, no. 9, p. 090506, Aug. 2021, doi: 10.1103/PhysRevLett.127.090506.

M. Akrom et al., “A novel quantum-enhanced model cascading approach based on support vector machine in blood-brain barrier permeability prediction,” Mater. Today Commun., vol. 45, no. March, p. 112341, Apr. 2025, doi: 10.1016/j.mtcomm.2025.112341.

Y. Wang, X. Wang, B. Qi, and D. Dong, “Supervised-learning guarantee for quantum AdaBoost,” Phys. Rev. Appl., vol. 22, no. 5, p. 054001, Nov. 2024, doi: 10.1103/PhysRevApplied.22.054001.

M. Al-Duais et al., “Comparative Analysis of Machine Learning and Deep learning Techniques for Early Prediction of Breast Cancer,” J. Futur. Artif. Intell. Technol., vol. 2, no. 2, pp. 242–254, Jun. 2025, doi: 10.62411/faith.3048-3719-68.

A. Rajkomar et al., “Scalable and accurate deep learning with electronic health records,” npj Digit. Med., vol. 1, no. 1, p. 18, May 2018, doi: 10.1038/s41746-018-0029-1.

A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,” Phys. D Nonlinear Phenom., vol. 404, p. 132306, Mar. 2020, doi: 10.1016/j.physd.2019.132306.

V. Havlíček et al., “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, Mar. 2019, doi: 10.1038/s41586-019-0980-2.

H. Azis, “Assessing the Performance of Logistic Regression in Heart Disease Detection through 5-Fold Cross-Validation,” Int. J. Artif. Intell. Med. Issues, vol. 2, no. 1, pp. 1–11, May 2024, doi: 10.56705/ijaimi.v2i1.137.

P. B. Khokhar, V. Pentangelo, F. Palomba, and C. Gravino, “Towards Transparent and Accurate Diabetes Prediction Using Machine Learning and Explainable Artificial Intelligence,” arXiv. Feb. 12, 2025. [Online]. Available: http://arxiv.org/abs/2501.18071

A. Maach, J. Elalami, N. Elalami, and E. H. El Mazoudi, “An Intelligent Decision Support Ensemble Voting Model for Coronary Artery Disease Prediction in Smart Healthcare Monitoring Environments,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 9, 2022, doi: 10.14569/IJACSA.2022.0130984.

A. Vaswani et al., “Attention Is All You Need,” in 31st Conference on Neural Information Processing Systems (NIPS 2017), Jun. 2017, vol. 30. [Online]. Available: http://arxiv.org/abs/1706.03762

M. Dalmolin, K. S. Azevedo, L. C. de Souza, C. B. de Farias, M. Lichtenfels, and M. A. C. Fernandes, “Feature Selection in Cancer Classification: Utilizing Explainable Artificial Intelligence to Uncover Influential Genes in Machine Learning Models,” AI, vol. 6, no. 1, p. 2, Dec. 2024, doi: 10.3390/ai6010002.

S. P. Rubini L. and P. Eswaran, “Chronic Kidney Disease,” UC Irvine Machine Learning Repository, 2015. https://archive.ics.uci.edu/dataset/336/chronic+kidney+disease (accessed May 09, 2025).

“Early Stage Diabetes Risk Prediction,” UC Irvine Machine Learning Repository, 2020. https://archive.ics.uci.edu/dataset/529/early+stage+diabetes+risk+prediction+dataset (accessed May 09, 2025).

N. Sharma, “Heart Prediction Dataset (Quantum),” Kaggle, 2025. https://www.kaggle.com/datasets/shantanugarg274/heart-prediction-dataset-quantum (accessed May 09, 2025).

P. B. Kikunda et al., “Predicting First-Year Student Performance with SMOTE-Enhanced Stacking Ensemble and Association Rule Mining for University Success Profiling,” J. Comput. Theor. Appl., vol. 3, no. 2, pp. 132–144, Sep. 2025, doi: 10.62411/jcta.14043.

C. C. Odiakaose et al., “Hypertension Detection via Tree-Based Stack Ensemble with SMOTE-Tomek Data Balance and XGBoost Meta-Learner,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 269–283, Dec. 2024, doi: 10.62411/faith.3048-3719-43.

J. T. Iorzua, D. K. Kwaghtyo, T. P. Hule, A. T. Ibrahim, and A. D. Nongu, “AI-Driven Approach to Crop Recommendation: Tackling Class Imbalance and Feature Selection in Precision Agriculture,” J. Futur. Artif. Intell. Technol., vol. 2, no. 2, pp. 269–281, Jul. 2025, doi: 10.62411/faith.3048-3719-118.

Downloads

Published

2025-10-11

How to Cite

Kusuma, M. G. S. P., Setiadi, D. R. I. M., Herowati, W., Sutojo, T., Adi, P. W., Dutta, P. K., & Nguyen, M. T. (2025). Integrating Quantum, Deep, and Classic Features with Attention-Guided AdaBoost for Medical Risk Prediction. Journal of Computing Theories and Applications, 3(2), 171–189. https://doi.org/10.62411/jcta.14873