Pendekatan Backpropagation Artificial Neural Network Untuk Prediksi Kemurnian Madu
DOI:
https://doi.org/10.62411/tc.v24i4.14855Abstract
Madu merupakan produk alami yang kemurniannya menjadi indikator utama kualitas dan keasliannya. Penelitian ini bertujuan untuk memprediksi tingkat kemurnian madu menggunakan algoritma Artificial Neural Network (ANN) dengan metode Backpropagation. Dataset terdiri dari 247.903 data dengan 10 atribut madu yang digunakan sebagai variabel input, sedangkan tingkat kemurnian madu dijadikan sebagai target output. Tahapan penelitian meliputi pra-pemrosesan data, pelatihan model, serta evaluasi hasil prediksi. Setelah melalui tahap pra-pemrosesan, jumlah fitur input bertambah menjadi 27. Pada proses eksperimen, dilakukan pengujian beberapa variasi arsitektur (27-14-14-1, 27-27-27-1, 27-54-54-1), fungsi aktivasi (ReLU, sigmoid biner, sigmoid bipolar), learning rate (0,01, 0,1, 0,5), dan jumlah epoch (1000, 1500, 2000) untuk memperoleh konfigurasi terbaik. Hasil optimal diperoleh pada arsitektur jaringan 27-54-54-1 dengan fungsi aktivasi ReLU, learning rate 0,5, dan jumlah epoch sebanyak 2000. Konfigurasi tersebut menghasilkan kinerja prediksi dengan nilai Mean Squared Error (MSE) 0,000542, R-squared (R²) sebesar 0,972010, dan Mean Absolute Percentage Error (MAPE) 1,26%. Hasil ini membuktikan bahwa algoritma Backpropagation Artificial Neural Network dapat digunakan secara efektif dalam memprediksi tingkat kemurnian madu. Kata Kunci - Artificial Neural Network, Backpropagation, Prediksi, Kemurnian MaduDownloads
Published
Issue
Section
License
Copyright (c) 2025 Andi Muh Ihsanul Tafsir, Sulfayanti Sulfayanti, Nahya Nur

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/










