Penerapan K-Means Cluster Pada Daerah Penggunaan Teknologi di Indonesia

Penulis

  • Silvana Fitria Mandang Karawang Singaperbangsa University
  • Betha Nurina Sari Karawang Singaperbangsa University

DOI:

https://doi.org/10.33633/joins.v6i1.4545

Abstrak

Indonesia saat ini sedang mengalami kondisi yang tidak stabil akibat adanya virus Covid-19. Virus Covid-19 telah menyebar ke seluruh wilayah Indonesia dan menginfeksi ribuan orang. Akibat adanya virus ini hampir semua aspek kehidupan berubah termasuk pendidikan. Pemerintah akhirnya mengeluarkan kebijakan baru dengan mengubah proses belajar dan mengajar tatap muka menjadi daring. Akan tetapi, di Indonesia sendiri perkembangan dan pemanfaatan teknologi komputer dan internet masih belum merata. Umumnya hanya masyarakat perkotaan yang memiliki akses teknologi tinggi dibandingkan dengan pedesaan. Tujuan dari penelitian ini adalah menerapkan metode clustering k-means pada penggunaan teknologi siswa umur 5-24 tahun selama pembelajaran daring. Dari hasil penelitian menggunakan 34 data provinsi di Indonesia menghasilkan 3 cluster, cluster pertama dengan kategori tinggi sebanyak 7 provinsi, cluster kedua dengan kategori sedang sebanyak 19 provinsi dan cluster ketiga dengan kategori rendah sebanyak 8 provinsi

Referensi

P. Alkhairi and A. P. Windarto, “Penerapan K-Means Cluster pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara,” Semin. Nas. Teknol. Komput. Sains, pp. 762–767, 2019.

R. L. Parmawati, I. A. Prabowo, and T. Susyanto, “Clustering Potensi Susu Sapi Perah Di Kabupaten Boyolali Menggunakan Algoritma K-MeansK-MEANS,” J. Teknol. Inf. dan Komun., vol. 7, no. 1, 2019, doi: 10.30646/tikomsin.v7i1.413.

A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,” J. Media Inform. Budidarma, vol. 4, no. 1, p. 51, 2020, doi: 10.30865/mib.v4i1.1784.

Z. Aras and Sarjono, “Analisis Data Mining Untuk Menentukan Kelompok Prioritas Penerima Bantuan Bedah Rumah Menggunakan Metode Clustering K-Means( Studi Kasus : Kantor Kecamatan Bahar Utara),” J. Manaj. Sist. Inf., vol. 1, no. 2, pp. 159–170, 2016.

A. T. R. Saragih, A. S. Sembiring, and M. Sayuthi, “Penerapan Metode Clustering K-Means untuk Proses Seleksi Calon Peserta Lomba MTQ,” Pelita Inform., vol. 17, no. April, pp. 117–122, 2018, [Online]. Available: https://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/download/776/704.

A. F. Muhammad, “Klasterisasi Proses Seleksi Pemain Menggunakan Algoritma K-Means (Study Kasus : Tim Hockey Kabupaten Kendal),” Jur. Tek. Inform. FIK UDINUS, pp. 1–5, 2015.

I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019, doi: 10.24014/rmsi.v5i1.7381.

A. P. Windarto, U. Indriani, M. R. Raharjo, and L. S. Dewi, “Bagian 1: Kombinasi Metode Klastering dan Klasifikasi (Kasus Pandemi Covid-19 di Indonesia),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 855, 2020, doi: 10.30865/mib.v4i3.2312.

##submission.downloads##

Diterbitkan

2021-05-31

Cara Mengutip

[1]
S. F. Mandang dan B. N. Sari, “Penerapan K-Means Cluster Pada Daerah Penggunaan Teknologi di Indonesia”, Journal of Information System, vol. 6, no. 1, hlm. 131–138, Mei 2021.

Terbitan

Bagian

Articles

Artikel paling banyak dibaca berdasarkan penulis yang sama

Obs.: Plugin ini minimal membutuhkan satu plugin statistik/laporan aktif. Jika plugin statistik menghasilkan lebih dari satu metrik, pilihlah metrik utama pada pengaturan halaman admin dan/atau pada halaman pengaturan manajer jurnal.