Skip to main content Skip to main navigation menu Skip to site footer
Journal of Multiscale Materials Informatics
  • About
    • About the Journal
    • Editorial Team
    • Privacy Statement
    • Contact
  • Current
  • Archives
  • Announcements
  • Submission
Search
  • Register
  • Login
Search
  1. Home /
  2. Archives /
  3. Vol. 2 No. 1 (2025): April

Vol. 2 No. 1 (2025): April

Published: 2025-06-14

Articles

  • Comparative Study of Classical, Quantum, and Hybrid Stacking Models for Predicting Corrosion Inhibition Efficiency Using QSAR Descriptors

    Wise Herowati, Muhamad Akrom
    1-6
    • PDF
  • Towards intelligent post-quantum security: a machine learning approach to FrodoKEM, Falcon, and SIKE

    Muhamad Akrom, De Rosal Ignatius Moses Setiadi
    7-17
    • PDF
  • Synergizing Quantum Computing and Machine Learning: A Pathway Toward Quantum-Enhanced Intelligence

    Gustina Alfa Trisnapradika, Muhamad Akrom
    18-25
    • PDF
  • Layerwise Quantum Training: A Progressive Strategy for Mitigating Barren Plateaus in Quantum Neural Networks

    Harun Al Azies, Muhamad Akrom
    26-33
    • PDF
  • Tree Tensor Network Quantum-Classical Hybrid Neural Architecture for Efficient Data Classification

    Novianto Nur Hidayat, Muhamad Akrom
    34-39
    • PDF
  • Evaluating Gate-Based Quantum Machine Learning Models on Quantum Chemistry Datasets

    Wahyu Aji Eko Prabowo, Muhamad Akrom
    40-46
    • PDF

 

SUBMISSION
AUTHOR GUIDELINES
DOWNLOAD TEMPLATE
MANUSCRIPT SUBMISSION

 

Information

  • For Readers
  • For Authors
  • For Librarians

Flag Counter

Web Analytics Made Easy - Statcounter Visitor JIMAT

Supported by:

Journal of Multiscale Materials Informatics published by Universitas Dian Nuswantoro, Indonesia collaborates with Research Center for Quantum Computing and Materials Informatics. 

Indexed by:

Garuda - Garba Rujukan Digital

This journal is licensed under a Creative Commons Attribution 4.0 International License. 

ISSN: 3047-5724

More information about the publishing system, Platform and Workflow by OJS/PKP.