Evaluating Gate-Based Quantum Machine Learning Models on Quantum Chemistry Datasets
DOI:
https://doi.org/10.62411/jimat.v2i1.12950Abstract
This study evaluates gate-based quantum machine learning (QML) models, including the Variational Quantum Classifier (VQC) and Quantum k-Nearest Neighbors (QkNN), on the QM9 quantum chemistry dataset for binary classification of molecular electronic properties. Using IBM Qiskit, both models were tested on simulators and real quantum hardware. Classical models (LightGBM, SVM, MLP) served as benchmarks. Results show classical models outperform quantum ones, with LightGBM achieving the highest AUC-ROC (0.901). However, VQC on simulators achieved a competitive AUC of 0.781, and real hardware still yielded performance above that of chance. Despite hardware constraints, quantum models demonstrated learning capability. The findings support hybrid quantum-classical systems as a promising near-term approach while quantum hardware continues to evolveReferences
M. Akrom, S. Rustad, T. Sutojo, D.R.I.M. Setiadi, H.K. Dipojono, R. Maezono, M. Solomon, Quantum machine learning for corrosion resistance in stainless steel, Materials Today Quantum, 3, 100013 (2024), https://doi.org/10.1016/j.mtquan.2024.100013.
M. Akrom, S. Rustad, H.K. Dipojono, R. Maezono, H. Kasai, Quantum machine learning for ABO3 perovskite structure prediction, Comput. Mater. Sci. 250 (2025) 113694, https://doi.org/10.1016/j.commatsci.2025.113694.
M. Akrom, Quantum support vector machine for classification task: a review, J. Multiscale Mater. Inform. 1 (2) (2024) 1–8, https://doi.org/10.62411/jimat. v1i2.10965.
M. Akrom, S. Rustad, H.K. Dipojono, Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds, Mater. Today Quant. 2 (2024) 100007, https://doi. org/10.1016/j.mtquan.2024.100007.
M. Akrom, S. Rustad, H.K. Dipojono, Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds, Mater. Today Commun. (2024) 108758, https://doi.org/10.1016/J /J/J. MTCOMM.2024.108758.
M. Akrom, S. Rustad, H.K. Dipojono, R. Maezono, A comprehensive approach utilizing quantum machine learning in the study of corrosion inhibition on quinoxaline compounds, Artif. Intell. Chem. 2 (2) (2024) 100073, https://doi.org/ 10.1016/J.AICHEM.2024.100073.
M.R. Rosyid, L. Mawaddah, A.P. Santosa, M. Akrom, S. Rustad, H.K. Dipojono, Implementation of quantum machine learning in predicting corrosion inhibition efficiency of expired drugs, Mater. Today Commun. 40 (2024) 109830, https://doi.org/10.1016/J.MTCOMM.2024.109830.
M. Akrom, M.R. Rosyid, L. Mawaddah, A.P. Santosa, Variational Quantum Circuit-Based Quantum Machine Learning Approach for Predicting Corrosion Inhibition Efficiency of Expired Pharmaceuticals, Jurnal Online Informatika, 10(1), 1-11, 2025, https://doi.org/10.15575/join.v10i1.1333.
M. Akrom, S. Rustad, T. Sutojo, D.R.I.M Setiadi, P.N. Andono, G.F. Shidik, H.K. Dipojono, R. Maezono, A novel quantum-enhanced model cascading approach based on support vector machine in blood-brain barrier permeability prediction, Materials Today Communications, 40, 112341 (2025), https://doi.org/10.1016/j.mtcomm.2025.112341.
M. Akrom, Green corrosion inhibitors for iron alloys: a comprehensive review of integrating data-driven forecasting, density functional theory simulations, and experimental investigation, J. Multiscale Mater. Inform., vol. 1 (1) (Apr. 2024), pp. 22-37, doi: 10.62411/jimat.v1i1.10495
M Akrom, DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor, Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi 8 (1), 42-48, https://doi.org/10.30738/st.vol8.no1.a11775.
M.R. Rosyid, L. Mawaddah, A.P. Santosa, M. Akrom, S. Rustad, HK. Dipojono, Implementation of quantum machine learning in predicting corrosion inhibition efficiency of expired drugs, Materials Today Communications, 40, 109830, https://doi.org/10.1016/j.mtcomm.2024.109830.
M. Akrom, Quantum Support Vector Machine for Classification Task: A Review, Journal of Multiscale Materials Informatics 1 (2), 1-8, https://doi.org/10.62411/jimat.v1i2.1096.
M. Akrom, U. Sudibyo, A.W. Kurniawan, N.A. Setiyanto, W. Herowati, A. Pertiwi, A.N. Safitri, N.N. Hidayat, H. Al Azies, Artificial Intelligence Berbasis QSPR Dalam Kajian Inhibitor Korosi. 07(01), 15–20. https://doi.org/10.46961/jommit.v7i1.721.
Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O'Brien, J. L. (2010). "Quantum computers." Nature, 464(7285), 45-53.
Aaronson, S., & Arkhipov, A. (2011). "The Computational Complexity of Linear Optics." Proceedings of the ACM Symposium on Theory of Computing (STOC).
M. Akrom, W. Herowati, D.R.I.M. Setiadi, A Quantum Circuit Learning-based Investigation: A Case Study in Iris Benchmark Dataset Binary Classification, Journal of Computing Theories and Applications, 2(3), 355-367 (2025), https://doi.org/10.62411/jcta.11779.
M. Akrom, S. Rustad, T. Sutojo, W.A.E. Prabowo, H.K. Dipojono, R. Maezono, H. Kasai, Stacking classical-quantum hybrid learning approach for corrosion inhibition efficiency of N-heterocyclic compounds, Results in Surfaces and Interfaces, 18, 100462 (2025), https://doi.org/10.1016/j.rsurfi.2025.100462.
M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater. Today Commun. 35 (2023) 106402, https://doi.org/10.1016/J. MTCOMM.2023.106402.
M. Akrom, et al., DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract, Appl. Surf. Sci. 615 (2023), https://doi.org/10.1016/j. apsusc.2022.156319.
D. Alaminos, M.B. Salas, M.A. Fernández-Gámez, Quantum computing and deep learning methods for GDP growth forecasting, Comput. Econ. (2021) http://dx.doi.org/10.1007/s10614-021-10110-z.
F.J. García-Peñalvo, Desarrollo de estados de la cuestión robustos: Revisiones sistemáticas de literatura, Educ. Knowl. Soc. (EKS) 23 (2022) http://dx.doi.org/10.14201/eks.28600, URL http://repositorio.grial.eu/handle/grial/2568.
W. O’Quinn, S. Mao, Quantum machine learning: Recent advances and outlook, IEEE Wirel. Commun. 27 (3) (2020) 126–131, http://dx.doi.org/10.1109/MWC.001.1900341.
D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement, Int. J. Surg. 8 (5) (2010) 336–341, http://dx.doi.org/10.1016/j.ijsu.2010.02.007.
M. Petticrew, H. Roberts, Systematic Reviews in the Social Sciences: A Practical Guide, vol. 11, 2006, http://dx.doi.org/10.1002/9780470754887.
Y. Huang, H. Lei, X. Li, Q. Zhu, W. Ren, X. Liu, Quantum generative model with variable-depth circuit, Comput. Mater. Contin. 65 (1) (2020) 445–458, http://dx.doi.org/10.32604/cmc.2020.010390.
M. Srikumar, C.D. Hill, L.C.L. Hollenberg, Clustering and enhanced classification using a hybrid quantum autoencoder, Quantum Sci. Technol. 7 (1) (2021) 015020, http://dx.doi.org/10.1088/2058-9565/ac3c53.
D. Konar, S. Bhattacharyya, B.K. Panigrahi, E.C. Behrman, Qutrit-inspired fully self-supervised shallow quantum learning network for brain tumor segmentation, IEEE Trans. Neural Netw. Learn. Syst. (2021) 1–15, http://dx.doi.org/10. 1109/tnnls.2021.3077188, arXiv:2009.06767.
M. Lukac, K. Abdiyeva, M. Kameyama, CNOT-measure quantum neural networks, in: Proceedings of the International Symposium on Multiple-Valued Logic, Vol. 2018-May, IEEE Computer Society, 2018, pp. 186–191, http://dx.doi.org/10.1109/ISMVL.2018.00040.
Y. Li, R.G. Zhou, R. Xu, J. Luo, W. Hu, A quantum deep convolutional neural network for image recognition, Quantum Sci. Technol. 5 (4) (2020) http://dx.doi.org/10.1088/2058-9565/ab9f93.
Downloads
Published
Issue
Section
License
Authors who publish their articles in this journal agree to the following conditions:
- Copyright remains with the author and gives the JIMAT journal the right as first priority to publish the article under a Creative Commons Attribution License which allows articles to be shared with acknowledgment of the author of the article and this journal as the place of publication.
- Authors can distribute their published articles non-exclusively (for example: in university repositories or in books) with notification or acknowledgment of publication in JIMAT.
- Authors are permitted to list their work online (for example: on a personal website or in a university repository) before and after the submission process (see The Effect of Open Access).




