Comparative Study of Classical, Quantum, and Hybrid Stacking Models for Predicting Corrosion Inhibition Efficiency Using QSAR Descriptors

Authors

  • Wise Herowati Universitas Dian Nuswantoro
  • Muhamad Akrom Universitas Dian Nuswantoro

DOI:

https://doi.org/10.62411/jimat.v2i1.12217

Keywords:

Ridge regression, Gradient boosting, Quantum SVM, Hybrid stacking classical-quantum, Corrosion inhibition

Abstract

This study investigates the performance of classical, quantum, and hybrid classical-quantum stacking models in predicting Corrosion Inhibition Efficiency (IE%) using 14 QSAR descriptors. The hybrid model combines a Gradient Boosting Regressor (GBR) and a Quantum Support Vector Regressor (QSVR) through a meta-learner (Ridge Regression). Results show a significant improvement over traditional models. The hybrid stacking model achieved an R² of 0.834, an MSE of 8.123, an MAE of 2.371, and an RMSE of 2.850, outperforming both individual classical and quantum models. These results confirm the strength of hybrid models in capturing both complex nonlinear and quantum-interaction patterns in QSAR-based molecular prediction.

Author Biography

Muhamad Akrom, Universitas Dian Nuswantoro

Scopus: 58054974800 Google Scholar:  HqilwgYAAAAJ Sinta: 6741450  

References

G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, and ..., “International Measures of Prevention, Application, and Economics of Corrosion Technologies (IMPACT) Study (NACE International, Houston),” … /Nace-International-Report …, 2016.

M. Akrom, S. Rustad, H.K. Dipojono, A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors, Phys Scr, 99(3), 036006 (2024), https://doi.org/10.1088/1402-4896/ad28a9.

G. Gece, “Drugs: A review of promising novel corrosion inhibitors,” Corros Sci, 2011, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010938X11004197

C. Beltran-Perez et al., “A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine,” Int J Mol Sci, vol. 23, no. 9, May 2022, doi: 10.3390/ijms23095086.

C. Verma, E. E. Ebenso, and M. A. Quraishi, “Corrosion inhibitors for ferrous and non-ferrous metals and alloys in ionic sodium chloride solutions: A review,” J Mol Liq, 2017, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167732217337005

M. Akrom, Investigation of natural extracts as green corrosion inhibitors in steel using density functional theory, Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102 (2022), https://doi.org/10.23960%2Fjtaf.v10i1.2927.

A. Cherkasov, E. N. Muratov, D. Fourches, and ..., “QSAR modeling: where have you been? Where are you going to?,” Journal of medicinal …, 2014, doi: 10.1021/jm4004285.

I. B. Obot, D. D. Macdonald, and Z. M. Gasem, “Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview,” Corros Sci, 2015, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010938X15000487

Y. C. Lo, S. E. Rensi, W. Torng, and R. B. Altman, “Machine learning in chemoinformatics and drug discovery,” Drug Discov Today, 2018, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359644617304695

M. Akrom, S. Rustad, H.K. Dipojono. Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds. Materials Today Communications, 39, 108758 (2024), https://doi.org/10.1016/j.mtcomm.2024.108758.

C. G. ianqi Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” Proceedings of the 22th ACM SIGKDD International …, 2016.

C. Hansch, P. P. Maloney, T. Fujita, and R. M. Muir, “Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients,” Nature, 1962, [Online]. Available: https://www.nature.com/articles/194178b0

R. G. PEARSON, “Of the American chemical society,” J Am Chem Soc, 1963, [Online]. Available: http://www.kchn.pg.gda.pl/popsci/acid-base.pdf

I. Lukovits and M. V Diudea, “QSPR/QSAR Studies by Molecular Descriptors,” Nova, Huntington, MV Diudea (Ed.), 2001.

D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int J Mol Sci, 2002, [Online]. Available: https://www.mdpi.com/1422-0067/3/2/87

R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics. Molecular Descriptors for Chemoinformatics, Vol. 2. Wiley, Darmstadt, 2010.

M. Karelson, V. S. Lobanov, and A. R. Katritzky, “Quantum-chemical descriptors in QSAR/QSPR studies,” Chem Rev, 1996, doi: 10.1021/cr950202r.

M. Karelson, V. S. Lobanov, and A. R. Katritzky, “Quantum-chemical descriptors in QSAR/QSPR studies,” Chem Rev, 1996, doi: 10.1021/cr950202r.

M. Akrom, Green corrosion inhibitors for iron alloys: a comprehensive review of integrating data-driven forecasting, density functional theory simulations, and experimental investigation, J. Multiscale Mater. Inform., vol. 1 (1) (Apr. 2024), pp. 22-37, doi: 10.62411/jimat.v1i1.10495

M Akrom, DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor, Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi 8 (1), 42-48, https://doi.org/10.30738/st.vol8.no1.a11775.

M.R. Rosyid, L. Mawaddah, A.P. Santosa, M. Akrom, S. Rustad, HK. Dipojono, Implementation of quantum machine learning in predicting corrosion inhibition efficiency of expired drugs, Materials Today Communications, 40, 109830, https://doi.org/10.1016/j.mtcomm.2024.109830.

M. Akrom, Quantum Support Vector Machine for Classification Task: A Review, Journal of Multiscale Materials Informatics 1 (2), 1-8, https://doi.org/10.62411/jimat.v1i2.1096.

M. Akrom, U. Sudibyo, A.W. Kurniawan, N.A. Setiyanto, W. Herowati, A. Pertiwi, A.N. Safitri, N.N. Hidayat, H. Al Azies, Artificial Intelligence Berbasis QSPR Dalam Kajian Inhibitor Korosi. 07(01), 15–20. https://doi.org/10.46961/jommit.v7i1.721.

M. Akrom, S. Rustad, T. Sutojo, D.R.I.M Setiadi, P.N. Andono, G.F. Shidik, H.K. Dipojono, R. Maezono, A novel quantum-enhanced model cascading approach based on support vector machine in blood-brain barrier permeability prediction, Materials Today Communications, 40, 112341 (2025), https://doi.org/10.1016/j.mtcomm.2025.112341.

M. Akrom, W. Herowati, D.R.I.M. Setiadi, A Quantum Circuit Learning-based Investigation: A Case Study in Iris Benchmark Dataset Binary Classification, Journal of Computing Theories and Applications, 2(3), 355-367 (2025), https://doi.org/10.62411/jcta.11779.

M. Akrom, S. Rustad, T. Sutojo, W.A.E. Prabowo, H.K. Dipojono, R. Maezono, H. Kasai, Stacking classical-quantum hybrid learning approach for corrosion inhibition efficiency of N-heterocyclic compounds, Results in Surfaces and Interfaces, 18, 100462 (2025), https://doi.org/10.1016/j.rsurfi.2025.100462.

Downloads

Published

2025-06-14

Issue

Section

Articles