EDANet: A Novel Architecture Combining Depthwise Separable Convolutions and Hybrid Attention for Efficient Tomato Disease Recognition
DOI:
https://doi.org/10.62411/jcta.14620Keywords:
Attention mechanisms, Computer vision, Deep learning, Depthwise separable convolutions, Lightweight models, Plant disease classification, Precision agriculture, Tomato disease detectionAbstract
Tomato crop yields face significant threats from plant diseases, with existing deep learning solutions often computationally prohibitive for resource-constrained agricultural settings; to address this gap, we propose Efficient Disease Attention Network (EDANet), a novel lightweight architecture combining depthwise separable convolutions with hybrid attention mechanisms for efficient Tomato disease recognition. Our approach integrates channel and spatial attention within hierarchical blocks to prioritize symptomatic regions while utilizing depthwise decomposition to reduce parameters to only 104,043 (multiple times smaller than MobileNet and EfficientNet). Evaluated on ten tomato disease classes from PlantVillage, EDANet achieves 97.32% accuracy and exceptional (~1.00) micro-AUC, with perfect recognition of Mosaic virus (100% F1-score) and robust performance on challenging cases like Early blight (93.2% F1) and Target Spot (93.6% F1). The architecture processes 128×128 RGB images in ~23ms on standard CPUs, enabling real-time field diagnostics without GPU dependencies. This work bridges laboratory AI and practical farm deployment by optimizing the accuracy-efficiency tradeoff, providing farmers with an accessible tool for early disease intervention in resource-limited environments.References
Y. Gai and H. Wang, “Plant Disease: A Growing Threat to Global Food Security,” Agronomy, vol. 14, no. 8, p. 1615, Jul. 2024, doi: 10.3390/agronomy14081615.
S. Panno et al., “A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin,” Agronomy, vol. 11, no. 11, p. 2188, Oct. 2021, doi: 10.3390/agronomy11112188.
J.-T. Chen, M. Khan, A. Parveen, and J. K. Patra, Eds., Molecular and Biotechnological Tools for Plant Disease Management. Singapore: Springer Nature Singapore, 2025. doi: 10.1007/978-981-97-7510-1.
S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using Deep Learning for Image-Based Plant Disease Detection,” Front. Plant Sci., vol. 7, Sep. 2016, doi: 10.3389/fpls.2016.01419.
D. Mohnish Kumaar and S. Palani, “ResNet50 Integrated Vision Transformer for Enhanced Plant Disease Classification,” in 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT), May 2024, pp. 1–6. doi: 10.1109/AIIoT58432.2024.10574771.
Santosh Kumar Upadhyay and Rajesh Prasad, “Efficient-ViT B0Net: A high-performance light weight transformer for rice leaf disease recognition and classification,” J. Niger. Soc. Phys. Sci., p. 2940, Nov. 2025, doi: 10.46481/jnsps.2025.2940.
R. K. Rachman, D. R. I. M. Setiadi, A. Susanto, K. Nugroho, and H. M. M. Islam, “Enhanced Vision Transformer and Transfer Learning Approach to Improve Rice Disease Recognition,” J. Comput. Theor. Appl., vol. 1, no. 4, pp. 446–460, Apr. 2024, doi: 10.62411/jcta.10459.
M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” arXiv, May 2019, [Online]. Available: http://arxiv.org/abs/1905.11946
A. Musa, M. Hassan, M. Hamada, and F. Aliyu, “Low-Power Deep Learning Model for Plant Disease Detection for Smart-Hydroponics Using Knowledge Distillation Techniques,” J. Low Power Electron. Appl., vol. 12, no. 2, p. 24, Apr. 2022, doi: 10.3390/jlpea12020024.
A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv, Apr. 2017, [Online]. Available: http://arxiv.org/abs/1704.04861
S. B. Imanulloh, A. R. Muslikh, and D. R. I. M. Setiadi, “Plant Diseases Classification based Leaves Image using Convolutional Neural Network,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 1–10, Aug. 2023, doi: 10.33633/jcta.v1i1.8877.
B. T. Hanh, H. Van Manh, and N.-V. Nguyen, “Enhancing the performance of transferred efficientnet models in leaf image-based plant disease classification,” J. Plant Dis. Prot., vol. 129, no. 3, pp. 623–634, Jun. 2022, doi: 10.1007/s41348-022-00601-y.
A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” arXiv, Jun. 2021, [Online]. Available: http://arxiv.org/abs/2010.11929
I. Haider et al., “Crops Leaf Disease Recognition From Digital and RS Imaging Using Fusion of Multi Self-Attention RBNet Deep Architectures and Modified Dragonfly Optimization,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 17, pp. 7260–7277, 2024, doi: 10.1109/JSTARS.2024.3378298.
F. M. Firnando, D. R. I. M. Setiadi, A. R. Muslikh, and S. W. Iriananda, “Analyzing InceptionV3 and InceptionResNetV2 with Data Augmentation for Rice Leaf Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 1–11, May 2024, doi: 10.62411/faith.2024-4.
E. S. Kumar, A. Kumar, H. Vardhan, R. Prasanth, and P. P. Sai, “Classification of Healthy and Unhealthy Leaf Disease Using Modified MobileNetV2,” in 2024 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI), Nov. 2024, pp. 482–488. doi: 10.1109/ICDICI62993.2024.10810763.
A. O. Adedoja, P. A. Owolawi, T. Mapayi, and C. Tu, “Intelligent Mobile Plant Disease Diagnostic System Using NASNet-Mobile Deep Learning,” IAENG Int. J. Comput. Sci., vol. 49, no. 1, pp. 1–23, 2022, [Online]. Available: https://www.iaeng.org/IJCS/issues_v49/issue_1/IJCS_49_1_23.pdf
N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,” J. Plant Dis. Prot., vol. 129, pp. 623–634, Jul. 2018, [Online]. Available: http://arxiv.org/abs/1807.11164
S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional Block Attention Module,” arXiv. Jul. 18, 2018. [Online]. Available: http://arxiv.org/abs/1807.06521
M. N. Kathiravan, K. G, G. Srilakshmi, G. N. Raju, D. Suganthi, and N. Gandhewar, “Leveraging IoT & CNN-CBAM for Early Blight Detection and Optimal Fungicide Application in Potato and Tomato Crops,” in 2024 International Conference on Distributed Systems, Computer Networks and Cybersecurity (ICDSCNC), Sep. 2024, pp. 1–6. doi: 10.1109/ICDSCNC62492.2024.10939352.
A. Gangwar, V. S. Dhaka, G. Rani, S. Khandelwal, E. Zumpano, and E. Vocaturo, “Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied Backgrounds,” Comput. Mater. Contin., vol. 79, no. 1, pp. 117–142, 2024, doi: 10.32604/cmc.2024.048119.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yusuf Ibrahim, Muyideen O. Momoh, Kafayat O. Shobowale, Zainab Mukhtar Abubakar, Basira Yahaya

This work is licensed under a Creative Commons Attribution 4.0 International License.













