Investigating a SMOTE-Tomek Boosted Stacked Learning Scheme for Phishing Website Detection: A Pilot Study
DOI:
https://doi.org/10.62411/jcta.14472Keywords:
Ensemble learning, Feature selection, Imbalanced datasets, Machine learning, Phishing detection, SMOTE-Tomek, Stacked ensemble, XGBoostAbstract
The daily exchange of informatics over the Internet has both eased the widespread proliferation of resources to ease accessibility, availability and interoperability of accompanying devices. In addition, the recent widespread proliferation of smartphones alongside other computing devices has continued to advance features such as miniaturization, portability, data access ease, mobility, and other merits. It has also birthed adversarial attacks targeted at network infrastructures and aimed at exploiting interconnected cum shared resources. These exploits seek to compromise an unsuspecting user device cum unit. Increased susceptibility and success rate of these attacks have been traced to user's personality traits and behaviours, which renders them repeatedly vulnerable to such exploits especially those rippled across spoofed websites as malicious contents. Our study posits a stacked, transfer learning approach that seeks to classify malicious contents as explored by adversaries over a spoofed, phishing websites. Our stacked approach explores 3-base classifiers namely Cultural Genetic Algorithm, Random Forest, and Korhonen Modular Neural Network – whose output is utilized as input for XGBoost meta-learner. A major challenge with learning scheme(s) is the flexibility with the selection of appropriate features for estimation, and the imbalanced nature of the explored dataset for which the target class often lags behind. Our study resolved dataset imbalance challenge using the SMOTE-Tomek mode; while, the selected predictors was resolved using the relief rank feature selection. Results shows that our hybrid yields F1 0.995, Accuracy 0.997, Recall 0.998, Precision 1.000, AUC-ROC 0.997, and Specificity 1.000 – to accurately classify all 2,764 cases of its held-out test dataset. Results affirm that it outperformed bench-mark ensembles. Result shows the proposed model explored UCI Phishing Website dataset, and effectively classified phishing (cues and lures) contents on websites.References
S. Sinduja, “Efficient Phishing Website Detection using Machine Learning Algorithm,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. 4, pp. 1442–1448, Apr. 2021, doi: 10.22214/ijraset.2021.33957.
J. Hera, “Phishing Defense Mechanisms: Strategies for Effective Measurement and Cyber Threat Mitigation,” ResearchSquare. 2024. doi: 10.13140/RG.2.2.27576.15364.
H. Alamleh, A. A. S. AlQahtani, and B. Al Smadi, “Secure Mobile Payment Architecture Enabling Multi-factor Authentication,” arXiv. Apr. 19, 2023. [Online]. Available: http://arxiv.org/abs/2304.09468
F. O. Aghware et al., “Enhancing the Random Forest Model via Synthetic Minority Oversampling Technique for Credit-Card Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 4, pp. 407–420, Mar. 2024, doi: 10.62411/jcta.10323.
L. De Kimpe, M. Walrave, W. Hardyns, L. Pauwels, and K. Ponnet, “You’ve got mail! Explaining individual differences in becoming a phishing target,” Telemat. Informatics, vol. 35, no. 5, pp. 1277–1287, Aug. 2018, doi: 10.1016/j.tele.2018.02.009.
R. Mohammad, T. L. Mccluskey, and F. Thabtah, “An Assessment of features related to phishing websites using an annotated technique,” in 2012 International Conference for Internet Technology and Secured Transactions, 2012, pp. 492–497. [Online]. Available: https://ieeexplore.ieee.org/document/6470857
R. R. Atuduhor et al., “StreamBoostE: A Hybrid Boosting-Collaborative Filter Scheme for Adaptive User-Item Recommender for Streaming Services,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 10, no. 2, pp. 89–106, Jun. 2024, doi: 10.22624/AIMS/V10N2P8.
E. A. Otorokpo et al., “DaBO-BoostE: Enhanced Data Balancing via Oversampling Technique for a Boosting Ensemble in Card-Fraud Detection,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 12, no. 2, pp. 45–66, 2024, doi: 10.22624/AIMS/MATHS/V12N2P4.
N. Sudheer, B. Divya, P. Deepa, B. Geethika, and B. Balaji, “Detection of phishing websites using a machine learning alogrithm,” 2025, p. 030059. doi: 10.1063/5.0247187.
A. U. Z. Umar, “Simple but Smart: Against the Pursuit of Endless Complexity in Deep Learning Models for Detecting Phishing URLs,” in International Physical Sciences Conference, 2025, no. August.
G. Sasikala et al., “An Innovative Sensing Machine Learning Technique to Detect Credit Card Frauds in Wireless Communications,” Wirel. Commun. Mob. Comput., vol. 2022, no. 1, pp. 1–12, Jan. 2022, doi: 10.1155/2022/2439205.
M. R. Baker, T. Etem, K. H. Jihad, and S. Buyrukoğlu, “The Role of Hyperparameter Tuning in Phishing Website Classification: A Comparative Analysis of ML Models,” in Hybrid Intelligent Systems, Springer, Cham, 2025, pp. 68–77. doi: 10.1007/978-3-031-78928-1_8.
A. A. Ojugo and A. O. Eboka, “Comparative Evaluation for High Intelligent Performance Adaptive Model for Spam Phishing Detection,” Digit. Technol., vol. 3, no. 1, pp. 9–15, Nov. 2018, doi: 10.12691/dt-3-1-2.
C. Li, N. Ding, H. Dong, and Y. Zhai, “Application of Credit Card Fraud Detection Based on CS-SVM,” Int. J. Mach. Learn. Comput., vol. 11, no. 1, pp. 34–39, Jan. 2021, doi: 10.18178/ijmlc.2021.11.1.1011.
D. Huang, Y. Lin, Z. Weng, and J. Xiong, “Decision Analysis and Prediction Based on Credit Card Fraud Data,” in The 2nd European Symposium on Computer and Communications, Apr. 2021, pp. 20–26. doi: 10.1145/3478301.3478305.
I. A. Anderson and W. Wood, “Habits and the electronic herd: The psychology behind social media’s successes and failures,” Consum. Psychol. Rev., vol. 4, no. 1, pp. 83–99, Jan. 2021, doi: 10.1002/arcp.1063.
S. Alnemari and M. Alshammari, “Detecting Phishing Domains Using Machine Learning,” Appl. Sci., vol. 13, no. 8, p. 4649, Apr. 2023, doi: 10.3390/app13084649.
W. Li, S. Manickam, Y. Chong, and S. Karuppayah, “Talking Like a Phisher: LLM-Based Attacks on Voice Phishing Classifiers,” arXiv, no. July. Jul. 22, 2025. [Online]. Available: http://arxiv.org/abs/2507.16291
A. Maureen, O. Anthonia, E. Omede, J. P. A. . Hampo, J. Anenechukwu, and C. Hampo, “Use of Adaptive Boosting Algorithm to Estimate User ’ s Trust in the Utilization o f Virtual Assistant Systems,” Int. J. Innov. Sci. Res. Technol., vol. 8, no. 1, pp. 502–507, 2023.
F. Jáñez-Martino, R. Alaiz-Rodríguez, V. González-Castro, E. Fidalgo, and E. Alegre, “A review of spam email detection: analysis of spammer strategies and the dataset shift problem,” Artif. Intell. Rev., vol. 56, no. 2, pp. 1145–1173, Feb. 2023, doi: 10.1007/s10462-022-10195-4.
M. Ahmed, K. Ansar, C. B. Muckley, A. Khan, A. Anjum, and M. Talha, “A semantic rule based digital fraud detection,” PeerJ Comput. Sci., vol. 7, no. 1, p. e649, Aug. 2021, doi: 10.7717/peerj-cs.649.
M. A. Haque et al., “Cybersecurity in Universities: An Evaluation Model,” SN Comput. Sci., vol. 4, no. 5, p. 569, Jul. 2023, doi: 10.1007/s42979-023-01984-x.
T. Sahmoud and M. Mikki, “Spam Detection Using BERT,” arXiv. Jun. 07, 2022. [Online]. Available: http://arxiv.org/abs/2206.02443
A. A. Ojugo, M. I. Akazue, P. O. Ejeh, C. C. Odiakaose, and F. U. Emordi, “DeGATraMoNN: Deep Learning Memetic Ensemble to Detect Spam Threats via a Content-Based Processing,” Kongzhi yu Juece/Control Decis., vol. 38, no. 1, pp. 667–678, 2023.
C. Iuga, J. R. C. Nurse, and A. Erola, “Baiting the hook: factors impacting susceptibility to phishing attacks,” Human-centric Comput. Inf. Sci., vol. 6, no. 1, p. 8, Dec. 2016, doi: 10.1186/s13673-016-0065-2.
R. De’, N. Pandey, and A. Pal, “Impact of digital surge during Covid-19 pandemic: A viewpoint on research and practice,” Int. J. Inf. Manage., vol. 55, no. June, p. 102171, Dec. 2020, doi: 10.1016/j.ijinfomgt.2020.102171.
M. D. Okpor et al., “Pilot Study on Enhanced Detection of Cues over Malicious Sites Using Data Balancing on the Random Forest Ensemble,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 109–123, Sep. 2024, doi: 10.62411/faith.2024-14.
N. Tabassum, F. F. Neha, M. S. Hossain, and H. S. Narman, “A Hybrid Machine Learning based Phishing Website Detection Technique through Dimensionality Reduction,” in 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), May 2021, pp. 1–6. doi: 10.1109/BlackSeaCom52164.2021.9527806.
P. Justice and N. Dumka, “An Improved Model for Detecting Uniform Resource Locator (URL) using Deep Learning,” IJARCCE, vol. 10, no. 11, Nov. 2021, doi: 10.17148/IJARCCE.2021.101107.
N. Roja, “Phishing Website Detection Using GUI Implementation,” Int. J. Sci. Res. Eng. Manag., vol. 09, no. 07, pp. 1–9, Jul. 2025, doi: 10.55041/IJSREM51200.
W. Li, S. Manickam, Y.-W. Chong, W. Leng, and P. Nanda, “A State-of-the-Art Review on Phishing Website Detection Techniques,” IEEE Access, vol. 12, no. December, pp. 187976–188012, 2024, doi: 10.1109/ACCESS.2024.3514972.
M. Mia, D. Derakhshan, and M. M. A. Pritom, “Can Features for Phishing URL Detection Be Trusted Across Diverse Datasets? A Case Study with Explainable AI,” in Proceedings of the 11th International Conference on Networking, Systems, and Security, Dec. 2024, pp. 137–145. doi: 10.1145/3704522.3704532.
W. Li, S. U. A. Laghari, S. Manickam, Y. W. Chong, and B. Li, “Machine Learning-Enabled Attacks on Anti-Phishing Blacklists,” IEEE Access, vol. 12, no. December, pp. 191586–191602, 2024, doi: 10.1109/ACCESS.2024.3516754.
M. I. Akazue, I. A. Debekeme, A. E. Edje, C. Asuai, and U. J. Osame, “UNMASKING FRAUDSTERS: Ensemble Features Selection to Enhance Random Forest Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 201–211, Dec. 2023, doi: 10.33633/jcta.v1i2.9462.
G. S. Nayak, B. Muniyal, and M. C. Belavagi, “Enhancing Phishing Detection: A Machine Learning Approach With Feature Selection and Deep Learning Models,” IEEE Access, vol. 13, pp. 33308–33320, 2025, doi: 10.1109/ACCESS.2025.3543738.
D. R. I. M. Setiadi, A. R. Muslikh, S. W. Iriananda, W. Warto, J. Gondohanindijo, and A. A. Ojugo, “Outlier Detection Using Gaussian Mixture Model Clustering to Optimize XGBoost for Credit Approval Prediction,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 244–255, Nov. 2024, doi: 10.62411/jcta.11638.
R. J. van Geest, G. Cascavilla, J. Hulstijn, and N. Zannone, “The applicability of a hybrid framework for automated phishing detection,” Comput. Secur., vol. 139, no. January, p. 103736, Apr. 2024, doi: 10.1016/j.cose.2024.103736.
J. Yao, C. Wang, C. Hu, and X. Huang, “Chinese Spam Detection Using a Hybrid BiGRU-CNN Network with Joint Textual and Phonetic Embedding,” Electronics, vol. 11, no. 15, p. 2418, Aug. 2022, doi: 10.3390/electronics11152418.
A. A. Ojugo et al., “Forging a User-Trust Memetic Modular Neural Network Card Fraud Detection Ensemble: A Pilot Study,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 50–60, Oct. 2023, doi: 10.33633/jcta.v1i2.9259.
P. A. Onoma et al., “Investigating an Anomaly-based Intrusion Detection via Tree-based Adaptive Boosting Ensemble,” J. Fuzzy Syst. Control, vol. 3, no. 1, pp. 90–97, Mar. 2025, doi: 10.59247/jfsc.v3i1.279.
A. Varun Kumar, A. Prathiba, A. Ashritha, N. Harish Reddy, and D. X. S. Asha Shiny, “Phishing Website Detection Based on URL Features,” Int. J. Sci. Res. Eng. Technol., pp. 73–78, Apr. 2025, doi: 10.59256/ijsreat.20250502011.
A. P. Binitie et al., “Stacked Learning Anomaly Detection Scheme with Data Augmentation for Spatiotemporal Traffic Flow,” J. Fuzzy Syst. Control, vol. 2, no. 3, pp. 203–214, Oct. 2024, doi: 10.59247/jfsc.v2i3.267.
B. O. Malasowe, F. O. Aghware, M. D. Okpor, B. E. Edim, R. E. Ako, and A. A. Ojugo, “Techniques and Best Practices for Handling Cybersecurity Risks in Educational Technology Environment ( EdTech ),” J. Sci. Technol. Res., vol. 6, no. 2, pp. 293–311, 2024, doi: 10.5281/zenodo.12617068.
C. L. Kumar et al., “Metaparameter optimized hybrid deep learning model for next generation cybersecurity in software defined networking environment,” Sci. Rep., vol. 15, no. 1, p. 14166, Apr. 2025, doi: 10.1038/s41598-025-96153-w.
M. S. Ataa, E. E. Sanad, and R. A. El-khoribi, “Intrusion detection in software defined network using deep learning approaches,” Sci. Rep., vol. 14, no. 1, p. 29159, Nov. 2024, doi: 10.1038/s41598-024-79001-1.
S. Kayathri, T. Harikrishnan, K. Kb, and K. Kirubanithi, “Mechanism for Identifying Appropriate Phishing Websites Utilizing Machine Learning,” Int. Res. J. Mod. Eng. Technol. Sci., no. January, Apr. 2024, doi: 10.56726/IRJMETS52165.
Y. A. Alsariera, A. V. Elijah, and A. O. Balogun, “Phishing Website Detection: Forest by Penalizing Attributes Algorithm and Its Enhanced Variations,” Arab. J. Sci. Eng., vol. 45, no. 12, pp. 10459–10470, Dec. 2020, doi: 10.1007/s13369-020-04802-1.
R. Mahajan and I. Siddavatam, “Phishing Website Detection using Machine Learning Algorithms,” Int. J. Comput. Appl., vol. 181, no. 23, pp. 45–47, Oct. 2018, doi: 10.5120/ijca2018918026.
C. C. Odiakaose et al., “Hypertension Detection via Tree-Based Stack Ensemble with SMOTE-Tomek Data Balance and XGBoost Meta-Learner,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 269–283, Dec. 2024, doi: 10.62411/faith.3048-3719-43.
P. J, P. G. James, A. P, R. B, A. S, and K. N, “Phishing Website Detection Using Machine Learning,” in 2024 2nd International Conference on Networking and Communications (ICNWC), Apr. 2024, vol. 2, no. 2, pp. 1–5. doi: 10.1109/ICNWC60771.2024.10537279.
N. Islam et al., “Towards Machine Learning Based Intrusion Detection in IoT Networks,” Comput. Mater. Contin., vol. 69, no. 2, pp. 1801–1821, 2021, doi: 10.32604/cmc.2021.018466.
E. V. Ugbotu et al., “Transfer Learning Using a CNN Fused Random Forest for SMS Spam Detection with Semantic Normalization of Text Corpus,” NIPES - J. Sci. Technol. Res., vol. 7, no. 2, pp. 371–382, Jun. 2025, doi: 10.37933/nipes/7.2.2025.29.
T. C. Aghaunor et al., “Enhanced Scorch Occurrence Prediction in Foam Production via a Fusion SMOTE-Tomek Balanced Deep Learning Scheme,” NIPES - J. Sci. Technol. Res., vol. 7, no. 2, pp. 330–339, May 2025, doi: 10.37933/nipes/7.2.2025.25.
M. I. Akazue, A. Clive, E. Abel, O. Edith, and E. Ufiofio, “Cybershield: Harnessing Ensemble Feature Selection Technique for Robust Distributed Denial of Service Attacks Detection,” Kongzhi yu Juece/Control Decis., vol. 38, no. 3, 2023.
O. Sinayobye, R. Musabe, A. Uwitonze, and A. Ngenzi, “A Credit Card Fraud Detection Model Using Machine Learning Methods with a Hybrid of Undersampling and Oversampling for Handling Imbalanced Datasets for High Scores,” 2023, pp. 142–155. doi: 10.1007/978-3-031-34222-6_12.
W. Li, S. Manickam, S. U. A. Laghari, and Y.-W. Chong, “Uncovering the Cloak: A Systematic Review of Techniques Used to Conceal Phishing Websites,” IEEE Access, vol. 11, no. December 2024, pp. 71925–71939, 2023, doi: 10.1109/ACCESS.2023.3293063.
S. S. U S, “Phishing Website Detection using Machine Learning,” INTERANTIONAL J. Sci. Res. Eng. Manag., vol. 08, no. 06, pp. 1–5, Jun. 2024, doi: 10.55041/IJSREM36212.
D. R. I. M. Setiadi, S. Widiono, A. N. Safriandono, and S. Budi, “Phishing Website Detection Using Bidirectional Gated Recurrent Unit Model and Feature Selection,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 75–83, Jul. 2024, doi: 10.62411/faith.2024-15.
P. O. Ejeh, E. Adishi, E. Okoro, and A. Jisu, “Hybrid integration of organizational honeypot to aid data integration, protection and organizational resources and dissuade insider threat,” FUPRE J. Sci. Ind. Res., vol. 6, no. 3, pp. 80–94, 2022.
W. Li, S. Ul Arfeen Laghari, S. Manickam, and Y. W. Chong, “Exploration and Evaluation of Human-centric Cloaking Techniques in Phishing Websites,” KSII Trans. Internet Inf. Syst., vol. 19, no. 1, pp. 232–258, Jan. 2025, doi: 10.3837/tiis.2025.01.011.
S. A. A. A. Alsaidi et al., “HawkPhish-DNN cybersecurity model: adaptive hybrid optimization and deep learning for enhanced multi-objective phishing URL detection,” Int. J. Inf. Technol., vol. 17, no. 7, pp. 3859–3875, Sep. 2025, doi: 10.1007/s41870-025-02597-8.
D. Komalasari, T. B. Kurniawan, D. A. Dewi, M. Z. Zakaria, Z. Abdullah, and A. Alanda, “Phishing Domain Detection Using Machine Learning Algorithms,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, pp. 318–327, Feb. 2025, doi: 10.18517/ijaseit.15.1.12553.
H. Nakano, T. Koide, and D. Chiba, “PhishParrot: LLM-Driven Adaptive Crawling to Unveil Cloaked Phishing Sites,” in Proceedings of IEEE Global Communications Conference (GLOBECOM), 2025., 2025.
N. R. Pratama, D. R. I. M. Setiadi, I. Harkespan, and A. A. Ojugo, “Feature Fusion with Albumentation for Enhancing Monkeypox Detection Using Deep Learning Models,” J. Comput. Theor. Appl., vol. 2, no. 3, pp. 427–440, Feb. 2025, doi: 10.62411/jcta.12255.
M. D. Okpor et al., “Comparative Data Resample to Predict Subscription Services Attrition Using Tree-based Ensembles,” J. Fuzzy Syst. Control, vol. 2, no. 2, pp. 117–128, Jul. 2024, doi: 10.59247/jfsc.v2i2.213.
D. R. I. M. Setiadi, K. Nugroho, A. R. Muslikh, S. W. Iriananda, and A. A. Ojugo, “Integrating SMOTE-Tomek and Fusion Learning with XGBoost Meta-Learner for Robust Diabetes Recognition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 23–38, May 2024, doi: 10.62411/faith.2024-11.
N. Rtayli and N. Enneya, “Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization,” J. Inf. Secur. Appl., vol. 55, p. 102596, Dec. 2020, doi: 10.1016/j.jisa.2020.102596.
F. Omoruwou, A. A. Ojugo, and S. E. Ilodigwe, “Strategic Feature Selection for Enhanced Scorch Prediction in Flexible Polyurethane Form Manufacturing,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 346–357, Feb. 2024, doi: 10.62411/jcta.9539.
R. E. Yoro et al., “Adaptive DDoS detection mode in software-defined SIP-VoIP using transfer learning with boosted meta-learner,” PLoS One, vol. 20, no. 6, p. e0326571, Jun. 2025, doi: 10.1371/journal.pone.0326571.
S. Ju, H. Lim, and J. Heo, “Machine learning approaches for crop yield prediction with MODIS and weather data,” 40th Asian Conf. Remote Sensing, ACRS 2019 Prog. Remote Sens. Technol. Smart Futur., no. Acrs, pp. 1–4, 2020.
Y. Abakarim, M. Lahby, and A. Attioui, “An Efficient Real Time Model For Credit Card Fraud Detection Based On Deep Learning,” in Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications, Oct. 2018, pp. 1–7. doi: 10.1145/3289402.3289530.
A. Ghasemieh, A. Lloyed, P. Bahrami, P. Vajar, and R. Kashef, “A novel machine learning model with Stacking Ensemble Learner for predicting emergency readmission of heart-disease patients,” Decis. Anal. J., vol. 7, no. April, p. 100242, Jun. 2023, doi: 10.1016/j.dajour.2023.100242.
D. Sun, M. Liu, M. Li, Z. Shi, P. Liu, and X. Wang, “DeepMIT: A Novel Malicious Insider Threat Detection Framework based on Recurrent Neural Network,” in 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), May 2021, pp. 335–341. doi: 10.1109/CSCWD49262.2021.9437887.
A. Falconnet, C. K. Coursaris, J. Beringer, W. Van Osch, S. Sénécal, and P.-M. Léger, “Improving User Experience with Recommender Systems by Informing the Design of Recommendation Messages,” Appl. Sci., vol. 13, no. 4, p. 2706, Feb. 2023, doi: 10.3390/app13042706.
S. K. Bajaj and S. Hansen, “Social effects of phishing on e-commerce,” in IADIS International Conference on e-Commerce 2008, 2008, no. January 2008, pp. 215–219.
F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “DeLClustE: Protecting Users from Credit-Card Fraud Transaction via the Deep-Learning Cluster Ensemble,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 6, pp. 94–100, 2023, doi: 10.14569/IJACSA.2023.0140610.
A. R. Erhovwo, O. A. Ejaita, and D. Oghorodi, “A methodology for e-banking risk assessment using fuzzy logic and Bayesian network,” Sci. Africana, vol. 19, no. 3, pp. 101–124, Feb. 2021, doi: 10.4314/sa.v19i3.8.
L. Lakshmi, M. P. Reddy, C. Santhaiah, and U. J. Reddy, “Smart Phishing Detection in Web Pages using Supervised Deep Learning Classification and Optimization Technique ADAM,” Wirel. Pers. Commun., vol. 118, no. 4, pp. 3549–3564, Jun. 2021, doi: 10.1007/s11277-021-08196-7.
K. Omari, “Phishing Detection using Gradient Boosting Classifier,” Procedia Comput. Sci., vol. 230, pp. 120–127, 2023, doi: 10.1016/j.procs.2023.12.067.
J. H. Setu, N. Halder, A. Islam, and M. A. Amin, “RSTHFS: A Rough Set Theory-Based Hybrid Feature Selection Method for Phishing Website Classification,” IEEE Access, vol. 13, pp. 68820–68830, 2025, doi: 10.1109/ACCESS.2025.3561237.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Eferhire Valentine Ugbotu, Frances Uchechukwu Emordi, Emeke Ugboh, Kizito Eluemunor Anazia, Christopher Chukwufunaya Odiakaose, Paul Avwerosuoghene Onoma, Rebecca Okeoghene Idama, Arnold Adimabua Ojugo, Victor Ochuko Geteloma, Amanda Enaodona Oweimieotu, Tabitha Chukwudi Aghaunor, Amaka Patience Binitie, Anne Odoh, Chris Chukwudi Onochie, Peace Oguguo Ezzeh, Andrew Okonji Eboka, Joy Agboi, Patrick Ogholuwarami Ejeh

This work is licensed under a Creative Commons Attribution 4.0 International License.













