Fake News Detection Using Bi-LSTM Architecture: A Deep Learning Approach on the ISOT Dataset
DOI:
https://doi.org/10.62411/jcta.14235Keywords:
BiLSTM, Deep Learning, Outlier Detection, Fake News, HOAX Detection, ISOT, Misinformation DetectionAbstract
The proliferation of fake news across digital platforms has raised critical concerns about information reliability. A notable example is the viral rumour falsely claiming that the Nigerian Minister of the Federal Capital Territory, Nyesom Wike, had collapsed at an event and was rushed to an undisclosed hospital an entirely fabricated claim that caused public confusion. While both traditional machine learning and deep learning approaches have been explored for automated fake news detection, many existing models have been limited to topic-specific datasets and often suffer from overfitting, especially on smaller datasets like ISOT. This study addresses these challenges by proposing a standalone Bidirectional Long Short-Term Memory (BiLSTM) model for fake news classification using the ISOT dataset. Unlike multi-modal frameworks such as the MM-FND model by state-of-the-art model, which achieved 96.3% accuracy, the proposed BiLSTM model achieved superior results with 98.98% accuracy, 98.22% precision, 99.65% recall, and a 98.93% F1-score. The model demonstrated balanced classification across both fake and real news and exhibited strong generalization capabilities. However, training and validation performance plots revealed signs of overfitting after epoch 2, suggesting the need for regularization in future work. This study contributes to the growing body of research on fake news detection by showcasing the efficacy of a focused, sequential deep learning model over more complex architectures, offering a practical, scalable, and robust solution to misinformation detectionReferences
A. Bondielli and F. Marcelloni, “A survey on fake news and rumour detection techniques,” Inf. Sci. (Ny)., vol. 497, pp. 38–55, Sep. 2019, doi: 10.1016/j.ins.2019.05.035.
C. Nwonwu, F. Tukur, and O. Alo, “Nigeria elections: Websites use false stories to attract views and ads,” bbc.com, 2023. https://www.bbc.com/news/world-africa-66647768
O. Sunday, “NewsWike did not slump in Abuja – Lere Olayinka,” Daily Post Nigeria, 2025. https://dailypost.ng/2025/03/29/wike-did-not-slump-in-abuja-lere-olayinka/
D. Khattar, J. S. Goud, M. Gupta, and V. Varma, “MVAE: Multimodal Variational Autoencoder for Fake News Detection,” in The World Wide Web Conference, May 2019, pp. 2915–2921. doi: 10.1145/3308558.3313552.
X. Zhou and R. Zafarani, “Network-based Fake News Detection,” ACM SIGKDD Explor. Newsl., vol. 21, no. 2, pp. 48–60, Nov. 2019, doi: 10.1145/3373464.3373473.
K. Langin, “Fake news spreads faster than true news on Twitter—thanks to people, not bots,” Science (80-. )., Mar. 2018, doi: 10.1126/science.aat5350.
H. Ahmed, I. Traore, and S. Saad, “Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques,” in Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments, 2017, pp. 127–138. doi: 10.1007/978-3-319-69155-8_9.
A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, “Detection and Resolution of Rumours in Social Media,” ACM Comput. Surv., vol. 51, no. 2, pp. 1–36, Mar. 2019, doi: 10.1145/3161603.
S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false news online,” Science (80-. )., vol. 359, no. 6380, pp. 1146–1151, Mar. 2018, doi: 10.1126/science.aap9559.
Z. Zhao, P. Resnick, and Q. Mei, “Enquiring Minds,” in Proceedings of the 24th International Conference on World Wide Web, May 2015, pp. 1395–1405. doi: 10.1145/2736277.2741637.
S. Kumar, R. West, and J. Leskovec, “Disinformation on the Web,” in Proceedings of the 25th International Conference on World Wide Web, Apr. 2016, pp. 591–602. doi: 10.1145/2872427.2883085.
O. Bashaddadh, N. Omar, M. Mohd, and M. Nor Akmal Khalid, “Machine Learning and Deep Learning Approaches for Fake News Detection: A Systematic Review of Techniques, Challenges, and Advancements,” IEEE Access, vol. 13, pp. 90433–90466, 2025, doi: 10.1109/ACCESS.2025.3572051.
L. Ilias and I. Roussaki, “Detecting malicious activity in Twitter using deep learning techniques,” Appl. Soft Comput., vol. 107, p. 107360, Aug. 2021, doi: 10.1016/j.asoc.2021.107360.
E. Puraivan, R. Venegas, and F. Riquelme, “An empiric validation of linguistic features in machine learning models for fake news detection,” Data Knowl. Eng., vol. 147, p. 102207, Sep. 2023, doi: 10.1016/j.datak.2023.102207.
P. K. Verma, P. Agrawal, I. Amorim, and R. Prodan, “WELFake: Word Embedding Over Linguistic Features for Fake News De-tection,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 4, pp. 881–893, Aug. 2021, doi: 10.1109/TCSS.2021.3068519.
M. García Lozano et al., “Veracity assessment of online data,” Decis. Support Syst., vol. 129, p. 113132, Feb. 2020, doi: 10.1016/j.dss.2019.113132.
H. A. Santoso, E. H. Rachmawanto, A. Nugraha, A. A. Nugroho, D. R. I. M. Setiadi, and R. S. Basuki, “Hoax classification and sentiment analysis of Indonesian news using Naive Bayes optimization,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 18, no. 2, p. 799, Apr. 2020, doi: 10.12928/telkomnika.v18i2.14744.
S. Rezaei, M. Kahani, B. Behkamal, and A. Jalayer, “Early multi-class ensemble-based fake news detection using content features,” Soc. Netw. Anal. Min., vol. 13, no. 1, p. 16, Dec. 2022, doi: 10.1007/s13278-022-01019-y.
M. F. Mridha, A. J. Keya, M. A. Hamid, M. M. Monowar, and M. S. Rahman, “A Comprehensive Review on Fake News Detection With Deep Learning,” IEEE Access, vol. 9, pp. 156151–156170, 2021, doi: 10.1109/ACCESS.2021.3129329.
I. Segura-Bedmar and S. Alonso-Bartolome, “Multimodal Fake News Detection,” Information, vol. 13, no. 6, p. 284, Jun. 2022, doi: 10.3390/info13060284.
Y. Tashtoush, B. Alrababah, O. Darwish, M. Maabreh, and N. Alsaedi, “A Deep Learning Framework for Detection of COVID-19 Fake News on Social Media Platforms,” Data, vol. 7, no. 5, p. 65, May 2022, doi: 10.3390/data7050065.
R. K. Kaliyar, A. Goswami, P. Narang, and S. Sinha, “FNDNet – A deep convolutional neural network for fake news detection,” Cogn. Syst. Res., vol. 61, pp. 32–44, Jun. 2020, doi: 10.1016/j.cogsys.2019.12.005.
G. Potey, R. Jadhav, K. Shroff, A. Gore, D. Phalke, and J. Shimpi, “Fake News Detection and Sentiment Analysis in Twitter,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 4, pp. 1572–1577, 2020.
S. Kula, M. Choraś, and R. Kozik, “Application of the BERT-Based Architecture in Fake News Detection,” in 13th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2020), 2021, pp. 239–249. doi: 10.1007/978-3-030-57805-3_23.
B. Akinyemi, O. Adewusi, and A. Oyebade, “An Improved Classification Model for Fake News Detection in Social Media,” Int. J. Inf. Technol. Comput. Sci., vol. 12, no. 1, pp. 34–43, Feb. 2020, doi: 10.5815/ijitcs.2020.01.05.
S. Bauskar, V. Badole, P. Jain, and M. Chawla, “Natural Language Processing based Hybrid Model for Detecting Fake News Using Content-Based Features and Social Features,” Int. J. Inf. Eng. Electron. Bus., vol. 11, no. 4, pp. 1–10, Jul. 2019, doi: 10.5815/ijieeb.2019.04.01.
J. Y. Khan, M. T. I. Khondaker, S. Afroz, G. Uddin, and A. Iqbal, “A benchmark study of machine learning models for online fake news detection,” Mach. Learn. with Appl., vol. 4, p. 100032, Jun. 2021, doi: 10.1016/j.mlwa.2021.100032.
J. Alghamdi, Y. Lin, and S. Luo, “A Comparative Study of Machine Learning and Deep Learning Techniques for Fake News De-tection,” Information, vol. 13, no. 12, p. 576, Dec. 2022, doi: 10.3390/info13120576.
I. Ahmad, M. Yousaf, S. Yousaf, and M. O. Ahmad, “Fake News Detection Using Machine Learning Ensemble Methods,” Complexity, vol. 2020, pp. 1–11, Oct. 2020, doi: 10.1155/2020/8885861.
M. H. Goldani, S. Momtazi, and R. Safabakhsh, “Detecting fake news with capsule neural networks,” Appl. Soft Comput., vol. 101, p. 106991, Mar. 2021, doi: 10.1016/j.asoc.2020.106991.
S. Girgis, E. Amer, and M. Gadallah, “Deep Learning Algorithms for Detecting Fake News in Online Text,” in 2018 13th International Conference on Computer Engineering and Systems (ICCES), Dec. 2018, pp. 93–97. doi: 10.1109/ICCES.2018.8639198.
M. Sarnovský, V. Maslej-Krešňáková, and K. Ivancová, “Fake News Detection Related to the COVID-19 in Slovak Language Using Deep Learning Methods,” Acta Polytech. Hungarica, vol. 19, no. 2, pp. 43–57, 2022, doi: 10.12700/APH.19.2.2022.2.3.
E. Alsuwat and H. Alsuwat, “An improved multi-modal framework for fake news detection using NLP and Bi-LSTM,” J. Super-comput., vol. 81, no. 1, p. 177, Jan. 2025, doi: 10.1007/s11227-024-06671-z.
M. Fayaz, A. Khan, M. Bilal, and S. U. Khan, “Machine learning for fake news classification with optimal feature selection,” Soft Comput., vol. 26, no. 16, pp. 7763–7771, Aug. 2022, doi: 10.1007/s00500-022-06773-x.
C. Chang Yu, I. R. A Hamid, Z. Abdullah, K. Kipli, and H. Amnur, “A Multi-tier Model and Filtering Approach to Detect Fake News Using Machine Learning Algorithms,” JOIV Int. J. Informatics Vis., vol. 8, no. 2, p. 643, May 2024, doi: 10.62527/joiv.8.2.2703.
P. Rani and J. Shokeen, “FNNet: a secure ensemble-based approach for fake news detection using blockchain,” J. Supercomput., vol. 80, no. 14, pp. 20042–20079, Sep. 2024, doi: 10.1007/s11227-024-06216-4.
A. Kansal, “Fake News Detection Using Pos Tagging and Machine Learning,” J. Appl. Secur. Res., vol. 18, no. 2, pp. 164–179, Apr. 2023, doi: 10.1080/19361610.2021.1963605.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Maaruf M. Lawal, Abdulrashid Abdulrauf

This work is licensed under a Creative Commons Attribution 4.0 International License.













