Quantum support vector regression for predicting corrosion inhibition of drugs

Authors

  • Akbar Priyo Santosa Universitas Dian Nuswantoro
  • Muhamad Akrom Universitas Dian Nuswantoro

DOI:

https://doi.org/10.62411/jimat.v1i2.11427

Keywords:

QSVR, Corrosion inhibitor, Quantum machine learning, Drug

Abstract

This study evaluates the performance of Quantum Support Vector Regression (QSVR) in predicting material properties using limited data. Experimental results show that the QSVR model consistently produces superior prediction accuracy compared to previous conventional regression models. This improvement is especially evident in the prediction accuracy for small and complex datasets, where QSVR can better capture non-linear patterns. The superiority of QSVR in processing data with a quantum approach provides great potential in developing predictive models in materials science and computational chemistry.

References

M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, H.K. Dipojono, Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds, J Phys Conf Ser, 2673(1), 012014 (2023), https://doi.org/10.1088/1742-6596/2673/1/012014.

M. Akrom, Green corrosion inhibitors for iron alloys: a comprehensive review of integrating data-driven forecasting, density functional theory simulations, and experimental investigation. J Mult Mater Inf, 1(1), 22–37 (2024), https://doi.org/10. 62411/jimat.v1i1.10495

M. Akrom, S. Rustad, H.K. Dipojono, A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors, Phys Scr, 99(3), 036006 (2024), https://doi.org/10.1088/1402-4896/ad28a9.

S. Budi, M. Akrom, G.A. Trisnapradika, T. Sutojo, W.A.E. Prabowo, Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets, Scientific Journal of Informatics, 10(2), (2023), https://doi.org/10.15294/sji.v10i2.43929.

M. Akrom, S. Rustad, H.K. Dipojono, Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors, Results in Chemistry 6 (2023) 101126, https://doi.org/10.1016/j. rechem.2023.101126.

M. Akrom, S. Rustad, A.G. Saputro, H.K. Dipojono, Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors, Comput. Theor. Chem. 1229 (2023) 114307, https://doi.org/10.1016/ J.COMPTC.2023.114307.

M. Schuld, I. Sinayskiy, and F. Petruccione, The quest for a quantum support vector machine. Quantum Information Processing, 13(11), 2567-2586 (2014).

V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala, J.M. Chow, and J.M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212 (2019).

M. Akrom, S. Rustad, H.K. Dipojono, Prediction of Anti-Corrosion performance of new triazole derivatives via Machine learning, Comput. Theor. Chem. 1236 (2024), https://doi.org/10.1016/j.comptc.2024.114599.

M. Akrom, Investigation of natural extracts as green corrosion inhibitors in steel using density functional theory, Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102 (2022), https://doi.org/10.23960%2Fjtaf.v10i1.2927.

C. Beltran-Perez, et al., A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine, Int J. Mol. Sci. 23 (9) (2022), https://doi. org/10.3390/ijms23095086.

M. Akrom, S. Rustad, H.K. Dipojono. Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds. Materials Today Communications, 39, 108758 (2024), https://doi.org/10.1016/j.mtcomm.2024.108758.

M. Akrom, S. Rustad, H.K. Dipojono, SMILES-based machine learning enables the prediction of corrosion inhibition capacity, MRS Commun 14 (2024) 379–387, https://doi.org/10.1557/s43579-024-00551-6.

M. Akrom, S. Rustad, H.K. Dipojono. Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds. Materials Today Quantum, 2, 100007 (2024), https://doi.org/10.1016/j.mtquan.2024.100007.

Aaronson, S., & Arkhipov, A. (2011). "The Computational Complexity of Linear Optics." Proceedings of the ACM Symposium on Theory of Computing (STOC).

Wang, D., Guo, F., & Guo, Y. (2016). "A novel solution to multi-class classification problem using support vector machine." Journal of Ambient Intelligence and Humanized Computing, 7(4), 563-571.

Chang, H., Liu, Y., & Bai, Y. (2017). "A new multi-category support vector machine algorithm." Soft Computing, 21(6), 1377-1389.

M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater. Today Commun. 35 (2023) 106402, https://doi.org/10.1016/J. MTCOMM.2023.106402.

M. Akrom, et al., DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract, Appl. Surf. Sci. 615 (2023), https://doi.org/10.1016/j. apsusc.2022.156319.

D. Alaminos, M.B. Salas, M.A. Fernández-Gámez, Quantum computing and deep learning methods for GDP growth forecasting, Comput. Econ. (2021) http://dx.doi.org/10.1007/s10614-021-10110-z.

F.J. García-Peñalvo, Desarrollo de estados de la cuestión robustos: Revisiones sistemáticas de literatura, Educ. Knowl. Soc. (EKS) 23 (2022) http://dx.doi.org/10.14201/eks.28600, URL http://repositorio.grial.eu/handle/grial/2568.

W. O’Quinn, S. Mao, Quantum machine learning: Recent advances and outlook, IEEE Wirel. Commun. 27 (3) (2020) 126–131, http://dx.doi.org/10.1109/MWC.001.1900341.

D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement, Int. J. Surg. 8 (5) (2010) 336–341, http://dx.doi.org/10.1016/j.ijsu.2010.02.007.

M. Petticrew, H. Roberts, Systematic Reviews in the Social Sciences: A Practical Guide, vol. 11, 2006, http://dx.doi.org/10.1002/9780470754887.

Y. Huang, H. Lei, X. Li, Q. Zhu, W. Ren, X. Liu, Quantum generative model with variable-depth circuit, Comput. Mater. Contin. 65 (1) (2020) 445–458, http://dx.doi.org/10.32604/cmc.2020.010390.

M. Srikumar, C.D. Hill, L.C.L. Hollenberg, Clustering and enhanced classification using a hybrid quantum autoencoder, Quantum Sci. Technol. 7 (1) (2021) 015020, http://dx.doi.org/10.1088/2058-9565/ac3c53.

D. Konar, S. Bhattacharyya, B.K. Panigrahi, E.C. Behrman, Qutrit-inspired fully self-supervised shallow quantum learning network for brain tumor segmentation, IEEE Trans. Neural Netw. Learn. Syst. (2021) 1–15, http://dx.doi.org/10. 1109/tnnls.2021.3077188, arXiv:2009.06767.

C. Beltran-Perez, et al., A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine, Int J. Mol. Sci. 23 (9) (2022), https://doi. org/10.3390/ijms23095086.

T.H. Pham, P.K. Le, D.N. Son, A data-driven QSPR model for screening organic corrosion inhibitors for carbon steel using machine learning techniques, RSC Adv. 14 (16) (2024) 11157–11168, https://doi.org/10.1039/d4ra02159b.

Downloads

Published

2024-08-29

Issue

Section

Articles