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 This study evaluates the performance of Quantum Support Vector 

Regression (QSVR) in predicting material properties using limited 

data. Experimental results show that the QSVR model consistently 

produces superior prediction accuracy compared to previous 

conventional regression models. This improvement is especially 

evident in the prediction accuracy for small and complex datasets, 

where QSVR can better capture non-linear patterns. The superiority 

of QSVR in processing data with a quantum approach provides great 

potential in developing predictive models in materials science and 

computational chemistry. 
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1. INTRODUCTION (Times New Roman, 10 pt, bold) 
An electrochemical process known as corrosion occurs when metal surfaces come into contact with 

corrosive surroundings. It is a major loss-causing factor in several sectors but is most prevalent in the oil 

and gas. Since corrosion-related problems account for a sizeable amount of the yearly expenses incurred 

by oil and gas production businesses globally, corrosion is a topic worth researching, particularly in oil 

field applications [1], [2], [3]. Furthermore, adequate corrosion prevention can aid in averting several 

possible catastrophes that can result in grave problems, including fatalities, detrimental effects on society, 

and contamination of the environment and water supplies [4], [5], [6]. 

In recent years, the development of predictive models to study material properties has become a major 

focus in materials science and computational chemistry. Accurate predictive models can accelerate the 

discovery of new materials by reducing the reliance on expensive and time-consuming laboratory 

experiments. One approach that has been widely used is Support Vector Regression (SVR), which is known 

to handle high-dimensional data and detect non-linear patterns [7], [8]. 

However, although SVR offers several advantages, its performance is often limited when applied to 

small or complex datasets. This has prompted researchers to explore more innovative approaches, such as 

using quantum computing principles in predictive models. Quantum Support Vector Regression (QSVR) 

has emerged as a new method that integrates the advantages of SVR with the capabilities of quantum 

computing to overcome the limitations in non-linear prediction [9], [10]. 

In this study, we evaluate the performance of QSVR in predicting material properties, especially on 

limited and complex datasets. We compare the prediction accuracy of the QSVR model with that of 

conventional regression models that have been used previously and examine the extent to which quantum 

approaches can improve the prediction results. The results of this research are expected to provide 

significant contributions to the development of predictive models based on quantum computing and pave 

the way for broader applications in materials science. 

 

2. METHODS 
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2.1. Dataset 

The method must explain the procedures for obtaining data and data analysis techniques. The research 

stages and analysis must be explained in detail. A published dataset with 260 data points and 14 molecular 

descriptors is used in this investigation [11]. Molecular weight (MW), acid dissociation constant (pKa), 

water solubility (log S), polar surface area (PSA), polarizability (α), the energy of lowest unoccupied 

molecular orbital (LUMO), the energy of highest occupied molecular orbital (HOMO), Ionization Energy 

(I), Electron Affinity (A), Electronegativity (eV), Electrophilicity (ω), Hardness (eV), and The Faction 

Electron Shared (∆N) are some of these features. 

 

2.2. Preprocessing 

Preprocessing is done since some data points have missing values, leading to data cleaning with 78 

clean data points. The Min-max scaler approach is then used to scale the features. The results are split into 

two variables: X and Y. Principal Component Analysis, or PCA, is used to variable X. By generating new, 

uncorrelated variables and optimizing data variance, PCA is a technique that minimizes information loss 

while reducing the dimension of a huge dataset to aid in interpretation [12], [13]. 

 

2.3. QSVR model 

The QSVR developed in this study consists of several main components that work synergistically to 

improve the accuracy of material property prediction. This model utilizes the principles of quantum 

computing combined with the traditional SVR algorithm. The first step in the QSVR architecture is 

mapping classical features to the quantum feature space. This is done using a quantum feature map, where 

input data is converted into quantum states through a series of gates. This process allows the model to 

capture complex non-linear patterns in the data more efficiently [14], [15]. 

One key component in QSVR is the use of a quantum kernel. This quantum kernel is calculated based 

on the amplitude or probability of the measurement results from the quantum circuit. It measures the 

similarity between data pairs in the quantum feature space. Because kernel computation is performed in 

quantum space, QSVR can exploit the advantages of superposition and entanglement to measure similarity 

more accurately than traditional kernels [16], [17]. 

The quantum circuit used in QSVR is designed to implement the quantum feature map and quantum 

kernel optimally. This circuit consists of a series of quantum gates, such as Ry and Rz, applied to qubits to 

manipulate quantum states. This circuit design minimizes errors and increases the stability of quantum 

computing, resulting in more accurate prediction results [18], [19]. 

After the quantum kernel is calculated, the model training process is carried out similarly to 

conventional SVR by minimizing a loss function that measures the prediction error against the training 

data. However, optimization is performed in the quantum feature space, allowing for a wider and more 

diverse solution space exploration. Optimization algorithms such as the Quantum Approximate 

Optimization Algorithm (QAOA) or variational methods are often used to find the optimal parameters in 

this stage [20], [21]. 

After the model is trained, predictions are made by measuring the quantum circuit's results for new 

input data. These measurement results are converted to the classical world for the final prediction [22], 

[23]. This measurement process allows QSVR to make more accurate and faster predictions, especially on 

complex datasets. 

The results of quantum computing are then further processed with classical methods to obtain the final 

prediction. This step involves calculating regression values based on the results of the quantum kernel and 

optimization. Combining quantum and classical computing provides a hybrid advantage that maximizes the 

model's predictive performance. 

 

2.4. Model evaluation 

The evaluation process is critical in determining the effectiveness of machine learning (ML) models, 

particularly in identifying the most suitable model for a given task. To achieve a thorough evaluation, 

several performance metrics are employed. Mean Absolute Deviation (MAD) measures the average of the 

absolute differences between the observed actual outcomes and the predictions made by the model. Unlike 

metrics that square the errors, MAD provides a straightforward measure of model accuracy by treating all 

errors equally without disproportionately penalizing larger errors. This makes MAD useful for obtaining a 

clear, interpretable understanding of the typical error magnitude. A lower MAD value indicates better 

predictive accuracy, highlighting the model's ability to produce predictions close to the actual values. Root 

Mean Squared Error (RMSE) is the square root of MSE and provides an interpretable error measure in the 
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same units as the output variable. RMSE is particularly valuable in understanding the typical size of the 

prediction errors and is often preferred because it is more sensitive to outliers. This study uses RMSE to 

gauge the robustness of the QSVR model's predictions. Mean Absolute Error (MAE) calculates the average 

of the absolute differences between predicted and actual values. Unlike MSE, which squares the errors, 

MAE provides a linear score that treats all errors equally, making it easier to interpret. MAE is often used 

alongside RMSE to give a more complete picture of model performance, with a lower MAE indicating 

better accuracy. These metrics collectively provide a robust framework for evaluating and comparing the 

performance of the QSVR model against traditional ML models. The study aims to highlight QSVR's 

strengths and potential limitations by analyzing these metrics, offering insights into its practical 

applicability and effectiveness in predictive modeling tasks [24], [25], [26], [27]. 

 

3. RESULTS AND DISCUSSION 
 

Table 1. Comparison between QSVR and classical models. 

Model RMSE MAE MAD Ref. 

QSVR 4.40 3.33 3.17 This work 

SVR 6.28 5.12 5,04 This work 

ARX 7.03 - - [28] 

GB 6.40 4.80 - [29] 

 

Table 1 presents a comparative analysis of the predictive performance of four models: QSVR, SVR, 

AutoRegressive with exogenous inputs (ARX), and Gradient Boosting (GB). The models are evaluated 

using three key metrics: RMSE, MAE, and MAD. The QSVR model achieves the lowest RMSE value of 

4.40, indicating superior predictive accuracy compared to the other models. This suggests that QSVR is 

better at minimizing the squared differences between the predicted and actual values, making it a more 

reliable model for this dataset. The RMSE for SVR is 6.28, significantly higher than that of QSVR. This 

indicates that SVR produces larger errors on average, which affects its overall accuracy. The ARX model 

has an RMSE of 7.03, the highest among the models compared. This result implies that ARX struggles the 

most regarding prediction accuracy, likely due to its reliance on simpler linear relationships. With an RMSE 

of 6.40, GB performs better than ARX but is still less accurate than QSVR and SVR. This suggests that 

while GB captures some complex patterns, it doesn't match the predictive power of the quantum-enhanced 

QSVR. 

QSVR also outperforms the other models regarding MAE, with a value of 3.33. This indicates that, on 

average, the absolute difference between the predicted and actual values is smaller, making QSVR the most 

precise model in this comparison. The MAE for SVR is 5.12, indicating that its predictions are generally 

less accurate than QSVR. This aligns with the RMSE results and reinforces QSVR's superior performance. 

GB shows an MAE of 4.80, slightly better than SVR but still significantly higher than QSVR, suggesting 

that while GB is reasonably accurate, it cannot match the precision of QSVR. The MAE for ARX is not 

provided in the table, which limits a direct comparison. However, given its high RMSE, it can be inferred 

that ARX likely has a higher MAE, indicating lower predictive accuracy. 

The MAD for QSVR is 3.17, the lowest among the models. This further underscores the model's ability 

to produce consistent predictions with minimal deviation from the actual values. SVR has an MAD of 5.04, 

higher than QSVR, indicating greater prediction variability. This result highlights QSVR's advantage in 

producing more stable and accurate predictions. The MAD for GB is not provided, which limits a direct 

comparison. However, based on the RMSE and MAE values, it can be inferred that GB may have a MAD 

value higher than QSVR, further supporting the superior performance of QSVR. Similar to GB, the MAD 

for ARX is not provided. However, given ARX's high RMSE, it likely has a higher MAD, which is 

consistent with its lower overall accuracy. 

The analysis demonstrates that the QSVR model outperforms the other models across all provided 

metrics. Its lower RMSE, MAE, and MAD values indicate that QSVR is better at capturing the underlying 

patterns in the data, leading to more accurate and stable predictions. This superior performance is likely 

due to the quantum-enhanced feature mapping and optimization processes in QSVR, which allow it to 

handle complex, non-linear relationships in the data. In contrast, traditional models like SVR, ARX, and 

GB exhibit higher error metrics, reflecting their limitations in predictive accuracy. While commonly used 

for regression tasks, SVR appears to fall short compared to QSVR, likely due to its reliance on classical 

optimization methods. ARX, with the highest RMSE, is particularly disadvantaged due to its simplistic 



A.P. Santosa et al.  Journal of Multiscale Materials Informatics 1(2), 2024, 30-34 

33 

 

linear approach, making it less suitable for the complex relationships in the dataset. While performing better 

than ARX, GB still lags behind QSVR, suggesting that even advanced classical models may struggle to 

match the capabilities of quantum-enhanced methods. These results suggest that QSVR offers a promising 

advancement in predictive modeling, particularly for applications where high accuracy and consistency are 

critical. The findings of this study reinforce the potential of quantum machine learning techniques to surpass 

traditional methods, especially as quantum computing technology continues to evolve. 

 

4. CONCLUSION 

This study demonstrates the significant advantages of the QSVR model over traditional regression 

models such as SVR, ARX, and GB. The results show that QSVR consistently outperforms these models 

across multiple evaluation metrics, including RMSE, MAE, and MAD. The QSVR model achieved the 

lowest RMSE, MAE, and MAD values, indicating superior predictive accuracy and stability. This enhanced 

performance is attributed to the quantum-enhanced feature mapping and optimization processes that allow 

QSVR to capture complex, non-linear relationships in the data effectively. In contrast, traditional models 

like SVR, ARX, and GB exhibited higher error metrics, reflecting their limitations in handling complex 

datasets. The findings of this study highlight the potential of quantum machine learning techniques, 

particularly QSVR, in advancing predictive modeling capabilities. As quantum computing technology 

continues to mature, it is expected that QSVR and similar quantum-enhanced models will play a critical 

role in various applications, offering more accurate and reliable predictions than classical methods. In 

summary, QSVR presents a promising approach for tasks that require high precision and consistency, and 

its integration into practical applications could lead to significant improvements in predictive performance 

across a wide range of domains. 
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