Investigation of an amino acid compound as a corrosion inhibitor via ensemble learning

Authors

  • Adhe Lingga Dewi Bina Nusantara University
  • Muhamad Akrom

DOI:

https://doi.org/10.62411/jimat.v1i2.11053

Abstract

In this study, we evaluate the performance of various machine learning models, including Random Forest (RF), Bagging (BAG), AdaBoost (ADA), Artificial Neural Network (ANN), and Support Vector Machine (SVM), using metrics such as R², Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The results indicate that AdaBoost (ADA) achieves the highest performance with an R² of 0.999, RMSE of 2.32, and MAE of 2.24, making it the most accurate model with the smallest prediction errors. Bagging (BAG) also performs exceptionally well, with an R2 of 0.996, RMSE of 3.09, and MAE of 2.92. The Artificial Neural Network (ANN) exhibits a high R2 of 0.999, though RMSE and MAE values are not provided. Random Forest (RF) and Support Vector Machine (SVM) show good performance with R² values of 0.982 and 0.970, respectively, but are outperformed by the ensemble methods. The findings underscore the superiority of ensemble techniques, particularly AdaBoost, in achieving high predictive accuracy and minimal errors in this context.

References

V.C. Anadebe, V.I. Chukwuike, S. Ramanathan, and R.C. Barik, Cerium-based metal organic framework (Ce-MOF) as corrosion inhibitor for API 5L X65 steel in CO2- saturated brine solution: XPS, DFT/MD-simulation, and machine learning model prediction, Process Safety and Environmental Protection, 168, 499–512 (2022), https://doi.org/10.1016/J.PSEP.2022.10.016.

M. Akrom, Investigation of natural extracts as green corrosion inhibitors in steel using density functional theory, Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102 (2022), https://doi.org/10.23960%2Fjtaf.v10i1.2927.

M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, and H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater Today Commun, 35, 106402 (2023), https://doi.org/10.1016/J.MTCOMM.2023.106402.

H. Kumar and V. Yadav, Highly efficient and eco-friendly acid corrosion inhibitor for mild steel: Experimental and theoretical study, J Mol Liq, 335, (2021), https://doi.org/10.1016/j.molliq.2021.116220.

M. Akrom, DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor, Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, 8(1), 42-48 (2022), https://doi.org/10.30738/st.vol8.no1.a11775.

C. Verma, M.A. Quraishi, and E.E. Ebenso, Quinoline and its derivatives as corrosion inhibitors: A review, Surfaces and Interfaces, 21, 100634 (2020), https://doi.org/10.1016/J.SURFIN.2020.100634.

S.A. Haladu, N.D. Mu’azu, S.A. Ali, A.M. Elsharif, N.A. Odewunmi, and H.M.A. El-Lateef, Inhibition of mild steel corrosion in 1 M H2SO4 by a gemini surfactant 1,6-hexyldiyl-bis-(dimethyldodecylammonium bromide): ANN, RSM predictive modeling, quantum chemical and MD simulation studies, J Mol Liq, 350, 118533 (2022), https://doi.org/10.1016/J.MOLLIQ.2022.118533.

M. Akrom and T. Sutojo, Investigasi Model Machine Learning Berbasis QSPR pada Inhibitor Korosi Pirimidin Investigation of QSPR-Based Machine Learning Models in Pyrimidine Corrosion Inhibitors, Eksergi, 20(2), 107-111 (2023), https://doi.org/10.31315/e.v20i2.9864.

F.E. Abeng and V.C. Anadebe, Combined electrochemical, DFT/MD-simulation and hybrid machine learning based on ANN-ANFIS models for prediction of doxorubicin drug as corrosion inhibitor for mild steel in 0.5 M H2SO4 solution, Comput Theor Chem, 1229, 114334 (2023), https://doi.org/10.1016/J.COMPTC.2023.114334.

M. Akrom, S. Rustad, and H.K. Dipojono, A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors, Phys Scr, 99,(3), 036006 (2024), https://doi.org/10.1088/1402-4896/ad28a9.

T.W. Quadri, L.O. Olasunkanmi, O.E. Fayemi, H. Lgaz, O. Dagdag, E.M. Sherif, A.A. Alrashdi, E.D. Akpan, H. Lee, and E.E. Ebenso, Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: Quantum chemical analysis and QSPR-ANN studies, Arabian Journal of Chemistry, 15(7), 103870 (2022), https://doi.org/10.1016/J.ARABJC.2022.103870.

R.L. Camacho-Mendoza, L. Feria, L.Á. Zárate-Hernández, J.G. Alvarado-Rodríguez, and J. Cruz-Borbolla, New QSPR model for prediction of corrosion inhibition using conceptual density functional theory, J Mol Model, 28(8), (2022), https://doi.org/10.1007/s00894-022-05240-6.

H. Lachhab, N. Benzbiria, A. Titi, S. Echihi, M.E. Belghiti, Y. Karzazi, A. Zarrouk, R. Touzani, C. Jama, and F. Bentiss, Detailed experimental performance of two new pyrimidine-pyrazole derivatives as corrosion inhibitors for mild steel in HCl media combined with DFT/MDs simulations of bond breaking upon adsorption, Colloids Surf A Physicochem Eng Asp, 680, 132649 (2024), https://doi.org/10.1016/j.colsurfa.2023.132649.

M. Boudalia, R.M. Fernández-Domene, L. Guo, S. Echihi, M.E. Belghiti, A. Zarrouk, A. Bellaouchou, A. Guenbour, and J. García-Antón, Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative, Materials, 16(2), (2023), https://doi.org/10.3390/ma16020678.

M. Akrom, S. Rustad, and H.K. Dipojono, Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors, Results Chem, 6, 101126 (2023), https://doi.org/10.1016/J.RECHEM.2023.101126.

L.B. Coelho, D. Zhang, Y.V. Ingelgem, D. Steckelmacher, A. Nowé, and H. Terryn, Reviewing machine learning of corrosion prediction in a data-oriented perspective, npj Materials Degradation, 6(1), (2022), https://doi.org/10.1038/s41529-022-00218-4.

T.W. Quadri, L.O. Olasunkanmi, O.E. Fayemi, E.D. Akpan, H. Lee, H. Lgaz, C. Verma, L. Guo, S. Kaya, and E.E. Ebenso, Multilayer perceptron neural network-based QSAR models for the assessment and prediction of corrosion inhibition performances of ionic liquids, Comput Mater Sci, 214, (2022), https://doi.org/10.1016/j.commatsci.2022.111753.

M. Akrom, S. Rustad, A.G. Saputro, and H.K. Dipojono, Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors, Comput Theor Chem, 1229, 114307 (2023), https://doi.org/10.1016/J.COMPTC.2023.114307.

M. Akrom, S. Rustad, and H.K. Dipojono, Prediction of Anti-Corrosion performance of new triazole derivatives via Machine learning, Comp and Theoretical Chem, 1236, 114599 (2024), https://doi.org/10.1016/j.comptc.2024.114599.

C.T. Ser, P. Žuvela, and M.W. Wong, Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships, Appl Surf Sci, 512, 145612 (2020), https://doi.org/10.1016/J.APSUSC.2020.145612.

T.W. Quadri, L.O. Olasunkanmi, E.D. Akpan, O.E. Fayemi, H. Lee, H. Lgaz, C. Verma, L. Guo, S. Kaya, and E.E. Ebenso, Development of QSAR-based (MLR/ANN) predictive models for effective design of pyridazine corrosion inhibitors, Mater Today Commun, 30, 103163 (2022), https://doi.org/10.1016/J.MTCOMM.2022.103163.

K. F. Khaled, W. E. Org, and N. A. Al-Mobarak, “A Predictive Model for Corrosion Inhibition of Mild Steel by Thiophene and Its Derivatives Using Artificial Neural Network Characterization and Corrosion Protection Properties of Imidazole Derivatives on Mild Steel in 1.0 M HCl View project ELECTROCHEMICAL SCIENCE A Predictive Model for Corrosion Inhibition of Mild Steel by Thiophene and Its Derivatives Using Artificial Neural Network,” 2012. [Online]. Available: https://www.researchgate.net/publication/236141845

H. Zhao, X. Zhang, L. Ji, H. Hu, and Q. Li, “Quantitative structure–activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design,” Corros Sci, vol. 83, pp. 261–271, Jun. 2014, doi: 10.1016/J.CORSCI.2014.02.023.

C. Beltran-Perez, A.A.A. Serrano, G. Solís-Rosas, A. Martínez-Jiménez, R. Orozco-Cruz, A. Espinoza-Vázquez, and A. Miralrio, A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine, Int J Mol Sci, 23(9), (2022), https://doi.org/10.3390/ijms23095086.

M. Akrom, S. Rustad, and H.K. Dipojono, Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds, Mater Today Quantum, (2024), https://doi.org/10.1016/j.mtquan.2024.100007.

S. Budi, M. Akrom, H. Al Azies, U. Sudibyo, T. Sutojo, G.A. Trisnapradika, A.N. Safitri, A. Pertiwi, and S. Rustad, Implementation of Polynomial Functions to Improve the Accuracy of Machine Learning Models in Predicting the Corrosion Inhibition Efficiency of Pyridine-Quinoline Compounds as Corrosion Inhibitors, KnE Engineering, 78-87 (2024), https://doi.org/10.18502/keg.v6i1.15351.

M. Akrom, A.G. Saputro, A.L. Maulana, A. Ramelan, A. Nuruddin, S. Rustad, and H.K. Dipojono, DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract, Appl Surf Sci, 615, 156319 (2023), https://doi.org/10.1016/j.apsusc.2022.156319.

M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, and H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater Today Commun, 35, 106402 (2023), https://doi.org/10.1016/J.MTCOMM.2023.106402.

M. Akrom, S. Rustad, and H.K. Dipojono, SMILES-based machine learning enables the prediction of corrosion inhibition capacity, MRS Comm, (2024), https://doi.org/10.1557/s43579-024-00551-6.

W. Herowati, W.A.E. Prabowo, M. Akrom, T. Sutojo, N.A. Setiyanto, A.W. Kurniawan, N.N. Hidayat, and S. Rustad, Prediction of Corrosion Inhibition Efficiency Based on Machine Learning for Pyrimidine Compounds: A Comparative Study of Linear and Non-linear Algorithms, KnE Engineering, 68-77 (2024), https://doi.org/10.18502/keg.v6i1.15350.

M. Akrom, S. Rustad, and H.K. Dipojono, Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds, Mater Today Comm, 39, 108758 (2024), https://doi.org/10.1016/j.mtcomm.2024.108758.

M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, and H.K. Dipojono, Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds, J Phys Conf Ser, 2673 (1), 012014 (2023), https://doi.org/10.1088/1742-6596/2673/1/012014.

P. D. Pately, M. R. Pately, N. Kaushik-Basu, and T. T. Talele, “3D QSAR and molecular docking studies of benzimidazole derivatives as hepatitis C virus NS5B polymerase inhibitors,” J Chem Inf Model, vol. 48, no. 1, pp. 42–55, 2008, doi: 10.1021/ci700266z.

Downloads

Published

2024-07-06