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 In this study, we evaluate the performance of various machine 

learning models, including Random Forest (RF), Bagging (BAG), 

AdaBoost (ADA), Artificial Neural Network (ANN), and Support 

Vector Machine (SVM), using metrics such as R², Root Mean 

Squared Error (RMSE), and Mean Absolute Error (MAE). The 

results indicate that AdaBoost (ADA) achieves the highest 

performance with an R² of 0.999, RMSE of 2.32, and MAE of 2.24, 

making it the most accurate model with the smallest prediction errors. 

Bagging (BAG) also performs exceptionally well, with an R2 of 

0.996, RMSE of 3.09, and MAE of 2.92. The Artificial Neural 

Network (ANN) exhibits a high R2 of 0.999, though RMSE and 

MAE values are not provided. Random Forest (RF) and Support 

Vector Machine (SVM) show good performance with R² values of 

0.982 and 0.970, respectively, but are outperformed by the ensemble 

methods. The findings underscore the superiority of ensemble 

techniques, particularly AdaBoost, in achieving high predictive 

accuracy and minimal errors in this context. 
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1. INTRODUCTION 
A simple, useful, and affordable method of controlling corrosion is using inhibitor technology [1], [2]. 

Using inhibitors is a well-known and effective way to stop corrosion damage [3], [4]. By preventing charge 

and mass transfer, corrosion inhibitor compounds have the advantage of covering metal surfaces in a 

protective layer that shields the metal from corrosive environmental impacts [5], [6], [7]. To stop oxidation 

processes that cause corrosion on the metal surface, corrosion inhibitors usually work by forming a shield 

[8], [9]. 

In the context of organic inhibitors, amino acid compounds have garnered a lot of attention due to their 

ability to inhibit corrosion in a variety of environments. The greater efficacy of amino acid-based corrosion 

inhibitors has been associated with the presence of functional groups, double conjugate bonds, and aromatic 

rings in their molecular structure. In general, theoretical techniques such as quantum chemical analyses and 

atomic simulations have been employed by researchers to ascertain the electrical and structural properties 

relevant to inhibitory effectiveness [10], [11]. Moreover, several studies that have employed the results of 

theoretical calculations like density functional theory (DFT) and molecular simulations have clarified the 

inhibitor's inhibitory mechanism [12], [13]. 

Machine learning (ML) may be used to assess a compound's effectiveness in preventing corrosion since 

there is a measurable correlation between a compound's molecular characteristics and activity and its 

structure [14], [15]. To develop machine learning models to evaluate inhibitor performance, many 

algorithms have also been used and combined, including ensemble methods, Bayesian approaches, decision 
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trees, gradient boosting machines, deep learning neural networks, and clustering algorithms [16], [17], [18], 

[19], [20], [21]. 

Using quantum chemical properties (QCP) as feature input, Khaled et al. [22] developed a quantitative 

structure-activity relationship (QSAR) model to forecast the effectiveness of 28 amino acid compounds as 

corrosion inhibitors. According to his research, corrosion inhibition efficiency (CIE) values may be 

predicted by the artificial neural network (ANN) model, which has a coefficient of determination (R2) = 

0.999 for model performance. Zhao et al. [23] used samples of 19 amino acid compounds to use the QASR 

model and correlate CIE with QCP. The findings demonstrate that the prediction performance of the support 

vector machine (SVM) model generated by the model is R2 = 0.970 and root mean square error (RMSE) = 

1.48. 

For the findings to offer pertinent information and accurately characterize the qualities of the material 

being tested, the primary issue in machine learning research is creating models that can make correct 

predictions. Therefore, to validate the ML model's ability to predict the CIE value of amino acid derivative 

chemical inhibitors, we assessed it in this work using ensemble-based models. 

 

2. METHODS 

2.1. Dataset 

Drawing from extant literature [22], [23], we have assembled a dataset of forty-seven amino acid 

compounds. QCP characteristics, including dipole moment (μ), global hardness (η), global softness (σ), 

energy gap (∆E), ionization potential (I), electron affinity (A), and a proportion of electrons transported 

(∆N), were employed, with CIE serving as the targets. Koopman theory and the density functional theory 

(DFT) method are typically used to compute QCP [24], [25]. Anticorrosive chemicals' ability to suppress 

corrosion is impacted by QCP [26], [27]. 

 

2.2. ML Modeling 

The first step in building an ML model is preprocessing. The first step in the preparation stage is data 

normalization using the MinMax scaling approach, which reduces sensitivity to certain characteristics. The 

next preprocessing step divides the data using the k-fold cross-validation strategy. This approach was 

selected to overcome bias and variance in the data by continuously training the model until it reaches the 

lowest feasible statistical error [28], [29].  Because of this, the study's test set is one-fold, while the training 

set (k = 10) is made up of the remaining nine folds. Generally, k = 5 or k = 10 are used, while the precise 

number of the k-fold depends on the characteristics of the data being used [30], [31]. 

In the modeling stage, we evaluate and compare the ensemble-based model's predictive performances, 

such as random forest (RF), bagging (BAG), and adaboost (ADA). The efficacy of prediction models is 

evaluated using regression metrics such as root mean square error (RMSE), coefficient of determination 

(R2), and mean absolute error (MAE). The ideal model has decreased RMSE, MPE, and R2 values as well 

as an R2 value that is close to 1 [32], [33]. 

 

3. RESULTS and DISCUSSIONS 
A comparison of the performance metrics of an SVM model from the literature and the XGBoost model 

created in this work is shown in Table 1. 

 

Table 1. Model performances 

Model R2 RMSE MAE Ref. 

RF 0.982 3.88 3.17 This work 

BAG 0.996 3.09 2.92 This work 

ADA 0.999 2.32 2.24 This work 

ANN 0.999 - - [22] 

SVM 0.970 - - [23] 

 

For this work, the RF model has R2 = 0.982. This indicates that 98.2% of the variance in the data is 

explained by the model. A high R2 value suggests that the model fits the data well. The average deviation 

of the predicted values from the actual values is RMSE = 3.88 units. A lower RMSE is better as it indicates 

higher accuracy. The average absolute difference between predicted and actual values is MAE = 3.17 units. 

MAE, like RMSE, is a measure of prediction accuracy, with lower values indicating better performance. 

For the BAG model, R2 = 0.996, which is even higher than RF, at 99.6%, indicating an excellent fit to the 

data. The RMSE (3.09) is lower than that of RF, suggesting that Bagging has better predictive accuracy. 
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The MAE (2.92) is also lower than that of RF, further confirming the improved performance of the Bagging 

model. ADA model with R2 = 0.999, the highest R2 value among the models, at 99.9%, suggests that the 

AdaBoost model almost perfectly explains the variance in the data. The lowest RMSE (2.32) among the 

models, indicates very high predictive accuracy. The lowest MAE (2.24), further confirms that AdaBoost 

has the best performance in terms of prediction accuracy. 

Compared to literature models, ANN with R2 = 0.999 is equal to that of the ADA model, indicating a 

very good fit to the data. For SVM with R2 = 0.970, the R2 value is slightly lower than that of RF, 

suggesting it explains 97% of the variance in the data. 

Based on the provided data, ADA appears to be the best overall model, with the highest R2 value 

(0.999) and the lowest RMSE (2.32) and MAE (2.24). This suggests that ADA has the highest predictive 

accuracy and best fits the data. Both BAG and ANN models also show excellent performance, with high 

R2 values. BAG has slightly higher RMSE and MAE compared to ADA, while ANN's other metrics are 

not provided. Despite having a high R2 value (0.970), the lack of RMSE and MAE values for SVM makes 

it difficult to fully assess its performance. However, its R2 value indicates it is a strong model. Although 

RF has good performance metrics, it is outperformed by both BAG and ADA in this comparison. The 

absence of RMSE and MAE values for ANN and SVM limits a complete comparison, but the provided 

metrics clearly show that ensemble methods (BAG and ADA) generally perform better than the individual 

models (RF and SVM) in this case. 

 

4. CONCLUSION 

Overall, ensemble methods, particularly ADA and BAG, show superior performance in this analysis. 

ADA is the best overall model, providing the highest accuracy and lowest error rates. ADA stands out as 

the best-performing model in this comparison. It has the highest R2 value (0.999), indicating it explains 

almost all the variance in the data. Additionally, it has the lowest RMSE (2.32) and MAE (2.24), signifying 

the highest predictive accuracy and the smallest average errors among the models evaluated. While ANN 

and SVM also show potential, the lack of complete performance metrics makes a full comparison 

challenging. RF is effective but is surpassed by the ensemble methods in this specific evaluation. 
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