Ensemble Learning Model in Predicting Corrosion Inhibition Capability of Pyridazine Compounds

Dian Arif Rachman, Muhamad Akrom

Abstract


Empirical studies of possible compound corrosion inhibitors require a lot of money, time, and resources. Therefore, we used a machine learning (ML) paradigm based on quantitative structure-property relationship (QSPR) models to evaluate ensemble algorithms as predictors of corrosion inhibition efficiency (CIE) values. Our investigation reveals that the gradient boosting (GB) regressor model outperforms other ensemble-based models. This advantage is evaluated objectively using the metrics root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). In summary, our research provides a new perspective on how well machine learning algorithms in particular ensembles work to identify organic molecules such as pyridazine that have the potential to prevent corrosion on the surfaces of metals such as iron and its alloys.

Full Text:

PDF

References


V.C. Anadebe, V.I. Chukwuike, S. Ramanathan, R.C. Barik, Cerium-based metal-organic framework (Ce-MOF) as corrosion inhibitor for API 5L X65 steel in CO2- saturated brine solution: XPS, DFT/MD-simulation, and machine learning model prediction, Process Safety and Environmental Protection, 168, 499–512 (2022), https://doi.org/10.1016/J.PSEP.2022.10.016.

M. Akrom, Investigation of natural extracts as green corrosion inhibitors in steel using density functional theory, Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102 (2022), https://doi.org/10.23960%2Fjtaf.v10i1.2927.

M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater Today Commun, 35, 106402 (2023), https://doi.org/10.1016/J.MTCOMM.2023.106402.

H. Kumar, V. Yadav, Highly efficient and eco-friendly acid corrosion inhibitor for mild steel: Experimental and theoretical study, J Mol Liq, 335, (2021), https://doi.org/10.1016/j.molliq.2021.116220.

M. Akrom, DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor, Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, 8(1), 42-48 (2022), https://doi.org/10.30738/st.vol8.no1.a11775.

C. Verma, M.A. Quraishi, E.E. Ebenso, Quinoline and its derivatives as corrosion inhibitors: A review, Surfaces and Interfaces, 21, 100634 (2020), https://doi.org/10.1016/J.SURFIN.2020.100634.

S.A. Haladu, N.D. Mu’azu, S.A. Ali, A.M. Elsharif, N.A. Odewunmi, H.M.A. El-Lateef, Inhibition of mild steel corrosion in 1 M H2SO4 by a gemini surfactant 1,6-hexyldiyl-bis-(dimethyldodecylammonium bromide): ANN, RSM predictive modeling, quantum chemical and MD simulation studies, J Mol Liq, 350, 118533 (2022), https://doi.org/10.1016/J.MOLLIQ.2022.118533.

M. Akrom, T. Sutojo, Investigasi Model Machine Learning Berbasis QSPR pada Inhibitor Korosi Pirimidin Investigation of QSPR-Based Machine Learning Models in Pyrimidine Corrosion Inhibitors, Eksergi, 20(2), 107-111 (2023), https://doi.org/10.31315/e.v20i2.9864.

F.E. Abeng, V.C. Anadebe, Combined electrochemical, DFT/MD-simulation and hybrid machine learning based on ANN-ANFIS models for prediction of doxorubicin drug as corrosion inhibitor for mild steel in 0.5 M H2SO4 solution, Comput Theor Chem, 1229, 114334 (2023), https://doi.org/10.1016/J.COMPTC.2023.114334.

M. Akrom, S. Rustad, H.K. Dipojono, A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors, Phys Scr, 99,(3), 036006 (2024), https://doi.org/10.1088/1402-4896/ad28a9.

T.W. Quadri, L.O. Olasunkanmi, O.E. Fayemi, H. Lgaz, O. Dagdag, E.M. Sherif, A.A. Alrashdi, E.D. Akpan, H. Lee, E.E. Ebenso, Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: Quantum chemical analysis and QSPR-ANN studies, Arabian Journal of Chemistry, 15(7), 103870 (2022), https://doi.org/10.1016/J.ARABJC.2022.103870.

R.L. Camacho-Mendoza, L. Feria, L.Á. Zárate-Hernández, J.G. Alvarado-Rodríguez, J. Cruz-Borbolla, New QSPR model for prediction of corrosion inhibition using conceptual density functional theory, J Mol Model, 28(8), (2022), https://doi.org/10.1007/s00894-022-05240-6.

H. Lachhab, N. Benzbiria, A. Titi, S. Echihi, M.E. Belghiti, Y. Karzazi, A. Zarrouk, R. Touzani, C. Jama, F. Bentiss, Detailed experimental performance of two new pyrimidine-pyrazole derivatives as corrosion inhibitors for mild steel in HCl media combined with DFT/MDs simulations of bond breaking upon adsorption, Colloids Surf A Physicochem Eng Asp, 680, 132649 (2024), https://doi.org/10.1016/j.colsurfa.2023.132649.

M. Boudalia, R.M. Fernández-Domene, L. Guo, S. Echihi, M.E. Belghiti, A. Zarrouk, A. Bellaouchou, A. Guenbour, J. García-Antón, Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative, Materials, 16(2), (2023), https://doi.org/10.3390/ma16020678.

M. Akrom, S. Rustad, H.K. Dipojono, Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors, Results Chem, 6, 101126 (2023), https://doi.org/10.1016/J.RECHEM.2023.101126.

L.B. Coelho, D. Zhang, Y.V. Ingelgem, D. Steckelmacher, A. Nowé, and H. Terryn, Reviewing machine learning of corrosion prediction in a data-oriented perspective, npj Materials Degradation, 6(1), (2022), https://doi.org/10.1038/s41529-022-00218-4.

T.W. Quadri, L.O. Olasunkanmi, O.E. Fayemi, E.D. Akpan, H. Lee, H. Lgaz, C. Verma, L. Guo, S. Kaya, E.E. Ebenso, Multilayer perceptron neural network-based QSAR models for the assessment and prediction of corrosion inhibition performances of ionic liquids, Comput Mater Sci, 214, (2022), https://doi.org/10.1016/j.commatsci.2022.111753.

M. Akrom, S. Rustad, A.G. Saputro, H.K. Dipojono, Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors, Comput Theor Chem, 1229, 114307 (2023), https://doi.org/10.1016/J.COMPTC.2023.114307.

M. Akrom, S. Rustad, H.K. Dipojono, Prediction of Anti-Corrosion performance of new triazole derivatives via Machine learning, Comp and Theoretical Chem, 1236, 114599 (2024), https://doi.org/10.1016/j.comptc.2024.114599.

C.T. Ser, P. Žuvela, M.W. Wong, Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships, Appl Surf Sci, 512, 145612 (2020), https://doi.org/10.1016/J.APSUSC.2020.145612.

C. Beltran-Perez, A.A.A. Serrano, G. Solís-Rosas, A. Martínez-Jiménez, R. Orozco-Cruz, A. Espinoza-Vázquez, A. Miralrio, A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine, Int J Mol Sci, 23(9), (2022), https://doi.org/10.3390/ijms23095086.

T.W. Quadri, L.O. Olasunkanmi, E.D. Akpan, O.E. Fayemi, H. Lee, H. Lgaz, C. Verma, L. Guo, S. Kaya, E.E. Ebenso, Development of QSAR-based (MLR/ANN) predictive models for effective design of pyridazine corrosion inhibitors, Mater Today Commun, 30, 103163 (2022), https://doi.org/10.1016/J.MTCOMM.2022.103163.

M. Akrom, S. Rustad, H.K. Dipojono, Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds, Mater Today Quantum, (2024), https://doi.org/10.1016/j.mtquan.2024.100007.

M. Akrom, S. Rustad, H.K. Dipojono, Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds, Mater Today Comm, 39, 108758 (2024), https://doi.org/10.1016/j.mtcomm.2024.108758.

M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, H.K. Dipojono, Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds, J Phys Conf Ser, 2673 (1), 012014 (2023), https://doi.org/10.1088/1742-6596/2673/1/012014.

S. Budi, M. Akrom, H. Al Azies, U. Sudibyo, T. Sutojo, G.A. Trisnapradika, A.N. Safitri, A. Pertiwi, S. Rustad, Implementation of Polynomial Functions to Improve the Accuracy of Machine Learning Models in Predicting the Corrosion Inhibition Efficiency of Pyridine-Quinoline Compounds as Corrosion Inhibitors, KnE Engineering, 78-87 (2024), https://doi.org/10.18502/keg.v6i1.15351.

M. Akrom, A.G. Saputro, A.L. Maulana, A. Ramelan, A. Nuruddin, S. Rustad, H.K. Dipojono, DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract, Appl Surf Sci, 615, 156319 (2023), https://doi.org/10.1016/j.apsusc.2022.156319.

M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater Today Commun, 35, 106402 (2023), https://doi.org/10.1016/J.MTCOMM.2023.106402.

M. Akrom, S. Rustad, H.K. Dipojono, SMILES-based machine learning enables the prediction of corrosion inhibition capacity, MRS Comm, (2024), https://doi.org/10.1557/s43579-024-00551-6.

W. Herowati, W.A.E. Prabowo, M. Akrom, T. Sutojo, N.A. Setiyanto, A.W. Kurniawan, N.N. Hidayat, S. Rustad, Prediction of Corrosion Inhibition Efficiency Based on Machine Learning for Pyrimidine Compounds: A Comparative Study of Linear and Non-linear Algorithms, KnE Engineering, 68-77 (2024), https://doi.org/10.18502/keg.v6i1.15350.




DOI: https://doi.org/10.62411/jimat.v1i1.10502

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Indexed by: 

           



Published by: 

Journal of Multiscale Materials Informatics (JIMAT) published by Universitas Dian Nuswantoro, Semarang, Indonesia, and collaborates with Research Center for Materials Informatics.

This journal is licensed by Creative Commons Attribution 4.0 International License.

 
 
 
Barcode 3047-5724