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 Empirical studies of possible compound corrosion inhibitors require 

a lot of money, time, and resources. Therefore, we used a machine 

learning (ML) paradigm based on quantitative structure-property 

relationship (QSPR) models to evaluate ensemble algorithms as 

predictors of corrosion inhibition efficiency (CIE) values. Our 

investigation reveals that the gradient boosting (GB) regressor model 

outperforms other ensemble-based models. This advantage is 

evaluated objectively using the metrics root mean square error 

(RMSE), mean absolute error (MAE), and coefficient of 

determination (R2). In summary, our research provides a new 

perspective on how well machine learning algorithms in particular 

ensembles work to identify organic molecules such as pyridazine that 

have the potential to prevent corrosion on the surfaces of metals such 

as iron and its alloys. 
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1. INTRODUCTION 
A simple, useful, and affordable method of controlling corrosion is using inhibitor technology [1], [2]. 

Using inhibitors is a well-known and effective way to stop corrosion damage [3], [4]. By preventing charge 

and mass transfer, corrosion inhibitor compounds can cover metal surfaces in a protective layer that shields 

the metal from corrosive environmental impacts [5], [6]. To stop oxidation reactions that cause corrosion 

on the metal surface, corrosion inhibitors usually work by forming a shield [7], [8], [9]. 

In the context of organic inhibitors, pyridazine compounds have garnered a lot of attention due to their 

ability to stop corrosion in a variety of settings. The greater efficacy of quinoxaline-based corrosion 

inhibitors has been associated with the presence of functional groups, double conjugate bonds, and aromatic 

rings in their molecular structure [10], [11]. In general, theoretical techniques such as quantum chemical 

analyses and atomic simulations have been employed by researchers to ascertain the electrical and structural 

properties relevant to inhibitory efficacy. Moreover, several studies that have employed the results of 

theoretical calculations like density functional theory (DFT) and molecular simulations have clarified the 

inhibitor's inhibitory mechanism [12], [13]. 

Machine learning (ML) can be used to assess a compound's effectiveness in preventing corrosion 

because there is a measurable correlation between a compound's molecular characteristics and activity and 

its structure [14], [15]. To develop machine learning models to evaluate inhibitor performance, several 

algorithms have also been used and combined, including ensemble methods, bayesian approaches, decision 

trees, gradient boosting machines, deep learning neural networks, and clustering algorithms [16], [17], [18], 

[19], [20], [21]. 

https://publikasi.dinus.ac.id/index.php/jimat/
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For the results to provide pertinent information and accurately characterize the qualities of the material 

being tested, the primary issue in machine learning research is creating models that can make correct 

predictions. Therefore, to validate the ML model's ability to predict the corrosion inhibition efficiency (CIE) 

value of pyridazine derivative chemical inhibitors, we assessed it in this study using an ensemble-based 

model. 

 

2. METHODS 

2.1. Dataset  

In this study, we took advantage of a publicly available dataset of quinoxaline compounds [22]. The 

data set consists of twenty pyridazine molecules, where the independent variables (features) are quantum 

chemical properties (QCP) and the dependent variables (targets) are CIE values [23], [24]. Among the 

molecular properties that are used as features are total energy (TE), HOMO, LUMO, gap energy (ΔE), 

dipole moment (μ), ionization potential (IP), electron affinity (EA), electronegativity (χ), global softness 

(σ), global hardness (η), and fraction of electrons transferred (ΔN). 

 

2.2. ML Model 

The first step in building an ML model is preprocessing, where data normalization using the MinMax 

scaling technique is applied to reduce the sensitivity of the model to certain features. The next preprocessing 

step is to divide the data into training and testing sets using a k-fold cross-validation strategy. This approach 

was chosen to overcome data bias and variation by continuously training the model until it reaches the 

lowest statistical error [26], [27]. The value k = 10 was chosen to divide the test set into one fold, while the 

training set consisted of the remaining nine folds. Generally, k = 5 or k = 10 are used, while the exact 

number of k-folds depends on the characteristics of the data used [28], [29]. 

In the modeling stage, we evaluate and compare the predictive performance of ensemble-based models, 

such as random forest (RF), gradient boosting (GB), and adaboost (ADA) regressors. The efficacy of 

prediction models is evaluated using regression metrics such as coefficient of determination (R2), root mean 

square error (RMSE), and mean absolute error (MAE). The ideal model has lower RMSE and MAE values 

and an R2 value that is close to 1 [30]. 

 

3. RESULT AND DISCUSSION 
Regression model performance is typically assessed using R2, RMSE, and MAE metrics. R2 quantifies 

the proportion of dependent variable variance explained by independent variables, with 1 denoting a perfect 

fit. Higher R2 values indicate better predictive performance. RMSE represents the typical error magnitude, 

with lower values indicating greater prediction accuracy. MAE measures the average absolute difference 

between expected and observed values, with lower values indicating better prediction accuracy. Table 1 

displays R2, RMSE, and MAE values for models ADA, GB, and RF, offering a quantitative comparison of 

their performance. 

 

Table 1. Model prediction performances 

Model R2 RMSE MAE 

GB 0.98 1.10 2.07 

ADA 0.97 1.85 2.46 

RF 0.85 4.71 4.91 

 

Table 1 compares models' prediction performances using R2, RMSE, and MAE metrics. Higher R2 

values indicate better predictive power, with GB scoring highest (0.98), followed by ADA (0.97) and RF 

(0.85). Lower RMSE values represent smaller prediction errors, with GB having the lowest (1.10), followed 

by ADA (1.85) and RF (4.71). Similarly, lower MAE values signify higher predictive accuracy, with GB 

again leading (2.07), followed by ADA (2.46) and RF (4.91). Overall, GB outperforms ADA and RF across 

all metrics, capturing more data variance and exhibiting lower prediction errors. 
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(a) 

 
(b) 

 
(c) 

Figure 1. Scatter plot of (a) GB, (b) ADA, and (c) RF models 

 

Furthermore, Figure 1 provides visual confirmation of these results by showing the distribution of data 

points concerning the models' prediction lines. In comparison to the other models, the GB model's data 

points are closer to its prediction (fitting) line, suggesting a better fit and alignment with the real data. Based 

on all evaluation criteria (R2, RMSE, and MAE), GB consistently performs better than ADA and RF 

models, suggesting improved predictive capability. This demonstrates that GB is effective for the prediction 

challenge. 

 

4. CONCLUSION 

The ability of the ML model to predict the CIE value of pyridazine compounds has been examined by 

comparing it with the ensemble-based models. The GB model was found to be more accurate than the ADA 

and RF models based on the R2, MAE, and RMSE measurements. GB is the better model, with higher R2 

values showing better variance capture, lower RMSE values reflecting smaller prediction errors, and lower 

MAE values suggesting increased accuracy. Visual examination of the data distribution in comparison to 

model predictions confirms this finding and highlights how much better GB fits the real data. This research 

provides useful insights into developing realistic and effective material exploration strategies to aid the 

industry in producing corrosion-inhibiting materials. 
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