Aspect-Based Sentiment Analysis on E-commerce Reviews using BiGRU and Bi-Directional Attention Flow
DOI:
https://doi.org/10.62411/jcta.12376Keywords:
Aspect-based sentiment analysis, Attention mechanism, BiDAF, E-commerce reviews analysis, Emoji handling, Lemmatization, Slang normalizationAbstract
Aspect-based sentiment Analysis (ABSA) is vital in capturing customer opinions on specific e-commerce products and service attributes. This study proposes a hybrid deep learning model integrating Bi-Directional Gated Recurrent Units (BiGRU) and Bi-Directional Attention Flow (BiDAF) to perform aspect-level sentiment classification. BiGRU captures sequential dependencies, while BiDAF enhances attention by focusing on sentiment-relevant segments. The model is trained on an Amazon review dataset with preprocessing steps, including emoji handling, slang normalization, and lemmatization. It achieves a peak training accuracy of 99.78% at epoch 138 with early stopping. The model delivers a strong performance on the Amazon test set across four key aspects: price, quality, service, and delivery, with F1 scores ranging from 0.90 to 0.92. The model was also evaluated on the SemEval 2014 ABSA dataset to assess generalizability. Results on the restaurant domain achieved an F1-score of 88.78% and 83.66% on the laptop domain, outperforming several state-of-the-art baselines. These findings confirm the effectiveness of the BiGRU-BiDAF architecture in modeling aspect-specific sentiment across diverse domains.References
K. Nugroho, E. Winarno, D. R. I. M. Setiadi, and O. Farooq, “Enhanced multi-lingual Twitter sentiment analysis using hyperparameter tuning k-nearest neighbors,” Bull. Electr. Eng. Informatics, vol. 13, no. 6, pp. 4327–4334, Dec. 2024, doi: 10.11591/eei.v13i6.7265.
H. A. Santoso, E. H. Rachmawanto, A. Nugraha, A. A. Nugroho, D. R. I. M. Setiadi, and R. S. Basuki, “Hoax classification and sentiment analysis of Indonesian news using Naive Bayes optimization,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 18, no. 2, p. 799, Apr. 2020, doi: 10.12928/telkomnika.v18i2.14744.
P. Sundarreson and S. Kumarapathirage, “SentiGEN: Synthetic Data Generator for Sentiment Analysis,” J. Comput. Theor. Appl., vol. 1, no. 4, pp. 461–477, Apr. 2024, doi: 10.62411/jcta.10480.
W. Zhang, X. Li, Y. Deng, L. Bing, and W. Lam, “A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 11, pp. 11019–11038, Nov. 2023, doi: 10.1109/TKDE.2022.3230975.
Y. Prakash and D. K. Sharma, “Aspect Based Sentiment Analysis for Amazon Data Products using PAM,” in 2023 6th International Conference on Information Systems and Computer Networks (ISCON), Mar. 2023, pp. 1–5. doi: 10.1109/ISCON57294.2023.10112193.
G. Zhao, Y. Luo, Q. Chen, and X. Qian, “Aspect-based sentiment analysis via multitask learning for online reviews,” Knowledge-Based Syst., vol. 264, p. 110326, 2023, doi: 10.1016/j.knosys.2023.110326.
M. M.Abdelgwad, T. H. A Soliman, A. I.Taloba, and M. F. Farghaly, “Arabic aspect based sentiment analysis using bidirectional GRU based models,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 9, pp. 6652–6662, Oct. 2022, doi: 10.1016/j.jksuci.2021.08.030.
K. K. Yusuf, E. Ogbuju, T. Abiodun, and F. Oladipo, “A Technical Review of the State-of-the-Art Methods in Aspect-Based Sentiment Analysis,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 287–298, Feb. 2024, doi: 10.62411/jcta.9999.
H. Xu, B. Liu, L. Shu, and P. Yu, “BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis,” in Proceedings of the 2019 Conference of the North, 2019, pp. 2324–2335. doi: 10.18653/v1/N19-1242.
B. Zeng, H. Yang, R. Xu, W. Zhou, and X. Han, “LCF: A Local Context Focus Mechanism for Aspect-Based Sentiment Classification,” Appl. Sci., vol. 9, no. 16, p. 3389, Aug. 2019, doi: 10.3390/app9163389.
R. E. Ako et al., “Effects of Data Resampling on Predicting Customer Churn via a Comparative Tree-based Random Forest and XGBoost,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 86–101, Jun. 2024, doi: 10.62411/jcta.10562.
A. Imtiaz, N. Pathirana, S. Saheel, K. Karunanayaka, and C. Trenado, “A Review on the Influence of Deep Learning and Generative AI in the Fashion Industry,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 201–216, Oct. 2024, doi: 10.62411/faith.3048-3719-29.
A. Angdresey, L. Sitanayah, and I. L. H. Tangka, “Sentiment Analysis for Political Debates on YouTube Comments using BERT Labeling, Random Oversampling, and Multinomial Naïve Bayes,” J. Comput. Theor. Appl., vol. 2, no. 3, pp. 342–354, Jan. 2025, doi: 10.62411/jcta.11668.
D. R. I. M. Setiadi, D. Marutho, and N. A. Setiyanto, “Comprehensive Exploration of Machine and Deep Learning Classification Methods for Aspect-Based Sentiment Analysis with Latent Dirichlet Allocation Topic Modeling,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 12–22, May 2024, doi: 10.62411/faith.2024-3.
L. Zhu, M. Xu, Y. Bao, Y. Xu, and X. Kong, “Deep learning for aspect-based sentiment analysis: a review,” PeerJ Comput. Sci., vol. 8, p. e1044, Jul. 2022, doi: 10.7717/peerj-cs.1044.
“Sentiment Analysis for User Reviews Based on Improved Binarization Aquila Optimization with Self-Attention Bi-LSTM Model,” Int. J. Intell. Eng. Syst., vol. 17, no. 5, pp. 813–824, Oct. 2024, doi: 10.22266/ijies2024.1031.61.
M. Sivakumar and S. R. Uyyala, “Aspect-based sentiment analysis of mobile phone reviews using LSTM and fuzzy logic,” Int. J. Data Sci. Anal., vol. 12, no. 4, pp. 355–367, Oct. 2021, doi: 10.1007/s41060-021-00277-x.
D. R. I. M. Setiadi, S. Widiono, A. N. Safriandono, and S. Budi, “Phishing Website Detection Using Bidirectional Gated Recurrent Unit Model and Feature Selection,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 75–83, Jul. 2024, doi: 10.62411/faith.2024-15.
M. R. R. Rana, A. Nawaz, T. Ali, A. M. El-Sherbeeny, and W. Ali, “A BiLSTM-CF and BiGRU-based Deep Sentiment Analysis Model to Explore Customer Reviews for Effective Recommendations,” Eng. Technol. Appl. Sci. Res., vol. 13, no. 5, pp. 11739–11746, Oct. 2023, doi: 10.48084/etasr.6278.
W. Gu, W. Aishanl, W. Sun, and Q. Yang, “Relational Graph Attention Network Based on Bi-Directional Attention Flow for Aspect-based Sentiment Analysis,” in 2022 European Conference on Natural Language Processing and Information Retrieval (ECNLPIR), Jul. 2022, pp. 69–77. doi: 10.1109/ECNLPIR57021.2022.00025.
M. Arief and M. B. M. Deris, “Text Preprocessing Impact for Sentiment Classification in Product Review,” in 2021 Sixth International Conference on Informatics and Computing (ICIC), Nov. 2021, pp. 1–7. doi: 10.1109/ICIC54025.2021.9632884.
M. IŞIK and H. DAĞ, “The impact of text preprocessing on the prediction of review ratings,” TURKISH J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1405–1421, May 2020, doi: 10.3906/elk-1907-46.
P. H. Hussan and S. M. Mangj, “BERTPHIURL : A Teacher-Student Learning Approach Using DistilRoBERTa and RoBERTa for Detecting Phishing Cyber URLs,” J. Futur. Artif. Intell. Technol., vol. 1, no. 4, 2025, doi: 10.62411/faith.3048-3719-71.
P. Kralj Novak, J. Smailović, B. Sluban, and I. Mozetič, “Sentiment of Emojis,” PLoS One, vol. 10, no. 12, p. e0144296, Dec. 2015, doi: 10.1371/journal.pone.0144296.
G. Zhao, Z. Liu, Y. Chao, and X. Qian, “CAPER: Context-Aware Personalized Emoji Recommendation,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 9, pp. 3160–3172, Sep. 2021, doi: 10.1109/TKDE.2020.2966971.
C. Biancalana, F. Gasparetti, A. Micarelli, and G. Sansonetti, “An approach to social recommendation for context-aware mobile services,” ACM Trans. Intell. Syst. Technol., vol. 4, no. 1, pp. 1–31, Jan. 2013, doi: 10.1145/2414425.2414435.
A. Tabassum and R. R. Patil, “A Survey on Text Pre-Processing & Feature Extraction Techniques in Natural Language Processing,” Int. Res. J. Eng. Technol., vol. 7, no. 6, pp. 4864–4867, 2020, [Online]. Available: www.irjet.net
R. Jayanto, R. Kusumaningrum, and A. Wibowo, “Aspect-based sentiment analysis for hotel reviews using an improved model of long short-term memory,” Int. J. Adv. Intell. Informatics, vol. 8, no. 3, p. 391, Nov. 2022, doi: 10.26555/ijain.v8i3.691.
M. M. Kabir, Z. A. Othman, and M. R. Yaakub, “A Hybrid Frequency Based, Syntax, and Conditional Random Field Method for Implicit and Explicit Aspect Extraction,” IEEE Access, vol. 12, no. May 2024, pp. 72361–72373, 2024, doi: 10.1109/ACCESS.2024.3403479.
S. A. Rahin, T. Hasib, and M. Hassan, “Aspect-Based Sentiment Analysis Using SemEval and Amazon Datasets,” in 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU), Mar. 2022, pp. 85–90. doi: 10.1109/WiDS-PSU54548.2022.00029.
J.-Y. Ho, G. Ju, S. Hong, J. An, and C. C. Lee, “Factors influencing customer satisfaction with AR shopping assistant applications in e-commerce: an empirical analysis utilizing text-mining techniques,” Aslib J. Inf. Manag., vol. 77, no. 2, pp. 239–259, Mar. 2025, doi: 10.1108/AJIM-03-2023-0089.
E. Sung, W. Y. Chung, and D. Lee, “Factors that affect consumer trust in product quality: a focus on online reviews and shopping platforms,” Humanit. Soc. Sci. Commun., vol. 10, no. 1, p. 766, Nov. 2023, doi: 10.1057/s41599-023-02277-7.
W. Deng, T. Su, Y. Zhang, and C. Tan, “Factors Affecting Consumers’ Online Choice Intention: A Study Based on Bayesian Network,” Front. Psychol., vol. 12, Oct. 2021, doi: 10.3389/fpsyg.2021.731850.
B. Daroch, G. Nagrath, and A. Gupta, “A study on factors limiting online shopping behaviour of consumers,” Rajagiri Manag. J., vol. 15, no. 1, pp. 39–52, Apr. 2021, doi: 10.1108/RAMJ-07-2020-0038.
L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey,” WIREs Data Min. Knowl. Discov., vol. 8, no. 4, Jul. 2018, doi: 10.1002/widm.1253.
M. Pontiki et al., “SemEval-2016 Task 5: Aspect Based Sentiment Analysis,” in Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), 2016, pp. 19–30. doi: 10.18653/v1/S16-1002.
M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Manandhar, “SemEval-2014 Task 4: Aspect Based Sentiment Analysis,” in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 2014, no. SemEval, pp. 27–35. doi: 10.3115/v1/S14-2004.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 De Rosal Ignatius Moses Setiadi, Warto, Ahmad Rofiqul Muslikh, Kristiawan Nugroho, Achmad Nuruddin Safriandono

This work is licensed under a Creative Commons Attribution 4.0 International License.