Penanganan Ketidakseimbangan Data Ekstrim pada Sistem Prediksi

Authors

  • Ari Nugroho Putro Universitas Negeri Semarang, Jawa Tengah, Indonesia
  • Much Aziz Muslim Universitas Negeri Semarang, Jawa Tengah, Indonesia

DOI:

https://doi.org/10.62411/tc.v24i4.15005

Abstract

Salah satu masalah utama dalam sistem prediksi adalah ketidakseimbangan data, di mana kelas tertentu sangat kurang terwakili dibandingkan dengan kelas lainnya. Ketidakseimbangan data dapat menyebabkan bias model, di mana model lebih mudah mendeteksi kelas mayoritas tetapi lemah dalam mendeteksi kelas minoritas. Terutama pada data dengan ketidakseimbangan ekstrem dengan IR >9, model memiliki akurasi tinggi tetapi performa recall rendah. Hal ini merugikan sistem prediksi yang memprioritaskan deteksi kelas minoritas. Penelitian ini bertujuan untuk meningkatkan recall pada dataset yang sangat tidak seimbang dengan menggunakan empat teknik penanganan ketidakseimbangan data, yaitu SMOTE dan OHIT pada level data, serta CSL dan CW pada level model. Teknik pada level data menyeimbangkan distribusi kelas dengan menambahkan data sintetis, sedangkan teknik pada level model meningkatkan sensitivitas terhadap kelas minoritas. Model yang digunakan sebagai baseline adalah LR untuk mengamati peningkatan recall dari keempat teknik penanganan ketidakseimbangan data. Dari hasil pengujian semua teknik penanganan ketidakseimbangan data, semuanya meningkatkan recall dengan margin sebesar 0,3243. Peningkatan recall tertinggi dicapai oleh LR-SMOTE dengan margin sebesar 0,3256. Penelitian ini menunjukkan bahwa recall model dapat ditingkatkan dengan menggunakan teknik penanganan ketidakseimbangan data. Kata kunci – ketidakseimbangan data ekstrem, sistem prediksi, recall, penanganan ketidakseimbangan data

Downloads

Published

2025-11-28

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.