Association Pattern Analysis of Global Company Market Capitalization Using the FP-Growth Algorithm with Load Balancing Constraint
DOI:
https://doi.org/10.62411/tc.v24i4.14885Abstract
This research focuses on analyzing the global company market capitalization dataset using the FP-Growth algorithm combined with a load-balancing constraint approach. The main objective is to identify association patterns among different market capitalization categories Small, Medium, Large, Mega, and Ultra to understand their distribution and interrelationships. The study begins with data preprocessing, cleaning, and categorization of companies based on their market values. The FP-Growth algorithm is applied with a minimum support threshold of 0.02, and a load balancing constraint is introduced by filtering rules with support ≥ 0.05 and lift > 1, ensuring balanced and significant association patterns. The analysis results show that the most dominant categories are Medium and Small, representing the majority of companies worldwide, while Large, Mega, and Ultra categories are relatively rare. The strongest rule indicates that countries with “Large” companies are very likely to also have “Small” and “Medium” companies. Evaluation metrics show an average lift of 1.171 and an average confidence of 1.000, confirming strong and reliable associations. Overall, this study provides insights into global market capitalization patterns and demonstrates the effectiveness of FP-Growth with constraints in revealing meaningful, balanced relationships within large-scale business data. Keywords – FP-Growth, Load Balancing Constraint, Market Capitalization, Association.Downloads
Published
Issue
Section
License
Copyright (c) 2025 Stenly Ibrahim Adam, Stenly Richard Pungus, Wilsen Grivin Mokodaser

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/










