Segmentasi Pelanggan Bisnis Kursus Berbasis LRFM Menggunakan t-SNE, UMAP, dan PaCMAP untuk Optimalisasi Profitabilitas Bisnis
DOI:
https://doi.org/10.62411/tc.v24i3.13782Abstract
Segmentasi pelanggan memainkan peran penting dalam meningkatkan profitabilitas bisnis dengan mengidentifikasi pola perilaku pelanggan. Penelitian ini mengusulkan pendekatan segmentasi berbasis model LRFM (Length, Recency, Frequency, Monetary) untuk meningkatkan ketepatan klasifikasi pelanggan. Dengan menggunakan data transaksi, skor LRFM dihitung dan diklasifikasikan ke dalam empat kategori: Best Customers (121 pelanggan), Loyal Customers, Potential, dan At Risk. Untuk meningkatkan interpretabilitas hasil, tiga teknik reduksi dimensi : t-SNE, UMAP, dan PaCMAP digunakan dalam analisis visual. Di antara ketiganya, UMAP menunjukkan visualisasi paling seimbang berdasarkan indikator separation clarity, cluster compactness, dan outlier identification. Hasil penelitian menunjukkan bahwa segmentasi visual membantu pengambil keputusan dalam mengidentifikasi kelompok pelanggan strategis untuk program retensi dan optimalisasi. Studi ini memberikan referensi berharga bagi industri yang ingin meningkatkan manajemen hubungan pelanggan melalui pendekatan berbasis data. Kata kunci - Model LRFM, profitabilitas bisnis, reduksi dimensi, segmentasi pelanggan, UMAPDownloads
Published
Issue
Section
License
Copyright (c) 2025 Yanuar Rafi Rahadian, Hasan Bisri, Latifa Indirani Amina

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/










