Mendeteksi Emosi Berdasarkan Postingan Sosial Media X Menggunakan Algoritma Long Short-Term Memory
DOI:
https://doi.org/10.62411/tc.v24i3.13509Abstract
Emosi merupakan aspek penting dalam komunikasi manusia yang sering muncul melalui unggahan di media sosial. Emosi tersebut diekspresikan dalam teks berbahasa Indonesia di platform media sosial X. Penelitian ini bertujuan untuk mendeteksi lima kategori emosi, yaitu marah, takut, senang, cinta, dan sedih. Model yang digunakan adalah algoritma Long Short-Term Memory (LSTM) dengan representasi kata dari FastText. Model dilatih menggunakan metode EarlyStopping dan dievaluasi dengan metrik akurasi, presisi, recall, dan F1-score. Hasil menunjukkan bahwa model mencapai akurasi sebesar 79% pada data testing dengan performa yang relatif seimbang untuk setiap kategori emosi. Penelitian ini menunjukkan bahwa FastText dan LSTM efektif untuk mendeteksi emosi dalam teks media sosial berbahasa Indonesia. Penelitian ini diharapkan bermanfaat dalam pengembangan penelitian berbasis emosi, seperti analisis sentimen, pemantauan opini publik, dan sistem pendukung kesehatan mental. Kata Kunci – Deteksi Emosi, Sosial Media, Long Short-Term Memory, FastTextDownloads
Published
Issue
Section
License
Copyright (c) 2025 Irni Irana Ainin Nadhiroh, Mohammad Zoqi Sarwani, Muhammad Udin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/










