Implementation of Extreme Learning Machine Based on HSV Color Features for Marine Animal Image Classification
DOI:
https://doi.org/10.62411/tc.v24i3.13490Abstract
Recognizing sea animals is a significant challenge in digital image recognition. This is due to the diverse visual characteristics of marine animals, including morphological shapes, body surface colors, and textures displayed in images. Environmental factors also influence image quality, such as underwater lighting conditions, water turbidity, and other external elements. To address these classification challenges, one proposed approach is the use of the Extreme Learning Machine (ELM) method, which can be implemented by utilizing HSV (Hue, Saturation, Value) color features as the main input. The HSV color space is chosen because it more closely resembles the way humans perceive colors. In this model, color is separated into three main components: hue represents the type of color, saturation indicates the intensity or purity of the color, and value refers to its brightness or darkness. The dataset consists of several classes of marine animals such as clams, squids, and shrimp, collected from high-resolution image datasets. Test results show that the ELM model can classify images with competitive accuracy, achieving up to 83% accuracy in a much shorter training time compared to traditional learning methods. This study demonstrates that combining HSV color features with the ELM algorithm can be an efficient approach for classifying marine animal images. Keywords - Shell, Squid, Shrimp, ELM,HSVDownloads
Published
Issue
Section
License
Copyright (c) 2025 Dzil Hidayati, Yuliana Pertiwi, Agung Ramadhanu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/










