Model Deteksi Tutupan Lahan di Kecamatan Gunungsitoli Menggunakan Algoritma Decision Tree Berbasis Machine Learning
DOI:
https://doi.org/10.62411/tc.v24i3.12955Abstract
Perkembangan teknologi penginderaan jauh semakin berkembang, integrasi data penginderan jauh dan artificial intelligence-machine learning menjadi pendekatan yang sangat efisien dalam mendeteksi tutupan lahan. Penelitian ini bertujuan untuk untuk membangun model algoritma tutupan lahan menggunakan algoritma decision tree. Data yang digunakan yakni Citra PlanetScope NICFI Level 1 yang diturunkan menjadi beberapa indeks spektral yang terdiri atas Normalized Difference Vegetation Index (NDVI), Visible Atmospherically Resistant Index (VARI), Soil Adjusted Vegetation Index (SAVI), Normalized Difference Water Index (NDWI), dan Green-Red Vegetation Index (GRVI). Untuk mengukur setia variabel digunakan Information Gain, Gini Index, dan Gain Ratio. Hasil penelitian menunjukan bahwa SAVI dan NDVI merupakan variabel yang informatif dalam membangun model. Distribusi tutupan lahan di Kecamatan Gunungsitoli didominasi oleh tutupan hutan. Kata Kunci – Decision Tree, Machine Learning, Tutupan Lahan, GunungsitoliDownloads
Published
Issue
Section
License
Copyright (c) 2025 Amati Eltriman Hulu, Mizero Alexis

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/










