Klasifikasi SVM Menggunakan Optimasi PSO Untuk Kelayakan Biji Kopi Dengan Level Medium Roast
DOI:
https://doi.org/10.62411/tc.v24i2.12657Abstract
Biji kopi dengan medium roast memiliki ciri warna coklat muda kehitaman, permukaan sedikit berminyak, dan retakan biji yang tidak terlalu lebar. Karena kopi merupakan hasil bumi yang banyak dikonsumsi dengan tingkat kematangan medium, diperlukan quality control yang efektif untuk memastikan biji kopi layak konsumsi. Penelitian ini mengambil sampel dari perusahaan terkait dan menggunakan metode GLCM untuk ekstraksi fitur numerik dari biji kopi, serta SVM dengan kernel RBF untuk klasifikasi, mengingat pentingnya pemilihan kernel dan parameter dalam menentukan akurasi. Untuk meningkatkan akurasi, diterapkan optimasi menggunakan PSO. Hasil klasifikasi menggunakan SVM saja mencapai akurasi 85,37%, sedangkan dengan optimasi PSO, akurasi meningkat menjadi 93,57%, menunjukkan bahwa penerapan PSO pada algoritma SVM mampu meningkatkan performa klasifikasi biji kopi medium roast secara signifikan. Kata kunci: SVM, PSO, Biji Kopi Medium RoastDownloads
Published
Issue
Section
License
Copyright (c) 2025 Wicaksono Agung Saputro, Pulung Nurtantio Andono, M Arief Soeleman

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/










