Model Klasifikasi IPK Mahasiswa Menggunakan Algoritma Decision Tree dan Random Forest Berbasis Feature Engineering
DOI:
https://doi.org/10.62411/tc.v24i2.12384Abstract
Indeks Prestasi Kumulatif (IPK) merupakan indikator utama dalam menilai keberhasilan akademik mahasiswa. Berbagai faktor, termasuk kesehatan mental dan fisik, berkontribusi terhadap pencapaian ini. Penelitian ini bertujuan untuk membangun model prediksi IPK menggunakan algoritma Decision Tree dan Random Forest berbasis Feature Engineering. Proses feature engineering mencakup feature selection untuk memilih fitur paling relevan, diikuti oleh feature extraction yang menyederhanakan fitur menjadi dua kategori utama: kesehatan mental dan fisik. Data diperoleh melalui survei terhadap 7.022 mahasiswa dari berbagai universitas luar negeri, mencakup faktor usia, jurusan, tingkat stres, kecemasan, serta pola tidur, aktivitas fisik dan lain sebagainya. Model prediksi dikembangkan menggunakan Decision Tree dan Random Forest, dengan evaluasi akurasi kedua algoritma. Hasil penelitian menunjukkan bahwa Random Forest memiliki akurasi lebih tinggi dibandingkan Decision Tree. Faktor kesehatan mental, terutama tingkat stres, memiliki pengaruh signifikan terhadap prediksi IPK, disusul oleh pola tidur. Studi ini menegaskan bahwa pemantauan kesehatan mental dan fisik mahasiswa dapat meningkatkan pencapaian akademik. Temuan ini diharapkan dapat membantu institusi pendidikan dalam merancang strategi dukungan akademik berbasis kesehatan mahasiswa. Kata Kunci: Indeks Prestasi Kumulatif (IPK), Machine Learning, Decision Tree, Random Forest, Feature EngineeringDownloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Aditya Firman

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/










