Optimasi Prediksi Prediabetes dengan Metode Fitur Selection dan Imbalance Learning
DOI:
https://doi.org/10.62411/tc.v24i1.11730Abstract
Diabetes adalah salah satu tantangan kesehatan global yang terus meningkat, dengan deteksi dini pradiabetes menjadi kunci untuk pencegahan. Data yang digunakan diambil dari Diabetes Health Indicators Dataset dan dipersiapkan melalui tahap feature engineering, analisis korelasi, dan penanganan missing value. Selanjutnya, model dibangun menggunakan tiga algoritma utama, yaitu Random Forest, XGBoost, dan Logistic Regression. Penelitian ini menggabungkan analisis korelasi variabel dan metode imbalance learning untuk mengoptimalkan prediksi pradiabetes menggunakan algoritma machine learning. Untuk menangani ketidakseimbangan data, teknik SMOTE diterapkan guna menghasilkan data sintetik pada kelas minoritas. Hasil penelitian menunjukkan model Random Forest memberikan kinerja terbaik dengan akurasi 97,57%, mengungguli XGBoost dan Logistic Regression. Penerapan analisis korelasi variabel dan imbalance learning terbukti efektif dalam meningkatkan kinerja prediksi dengan identifikasi fitur penting. Penelitian ini menunjukkan bahwa pendekatan yang diterapkan dapat membantu deteksi dini pradiabetes secara lebih akurat dan tepat. Kata kunci: Diabetes, Deteksi Prediabetes, Machine Learning, Random ForestDownloads
Published
Issue
Section
License
Copyright (c) 2025 samsul

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/










