Quantum Convolutional Neural Networks: Architectures, Applications, and Future Directions: A Review

Authors

  • Gustina Alfa Trisnapradika Universitas Dian Nuswantoro
  • Aprilyani Nur Safitri Universitas Dian Nuswantoro
  • Novianto Nur Hidayat Universitas Dian Nuswantoro
  • Muhamad Akrom Universitas Dian Nuswantoro

DOI:

https://doi.org/10.62411/jimat.v2i2.15154

Abstract

Quantum Convolutional Neural Networks (QCNNs) have emerged as one of the most promising architectures in Quantum Machine Learning (QML), enabling hierarchical quantum feature extraction and offering potential advantages over classical CNNs in expressivity and scalability. This study presents a Systematic Literature Review (SLR) on QCNN development from 2019 to 2025, covering theoretical foundations, model architectures, noise resilience, benchmark performance, and applications in materials informatics, chemistry, image recognition, quantum phase classification, and cybersecurity. The SLR followed PRISMA guidelines, screening 214 publications and selecting 47 primary studies. The review finds that QCNNs consistently outperform classical baselines in small-data and high-dimensional regimes due to quantum feature maps and entanglement-driven locality. Significant limitations include noise sensitivity, limited qubit availability, and a lack of standardized datasets for benchmarking. The novelty of this work lies in providing the first comprehensive synthesis of QCNN research across theory, simulations, and real-hardware deployment, offering a roadmap for research gaps and future directions. The findings confirm that QCNNs are strong candidates for NISQ-era applications, especially in physics-informed learning.

Author Biography

Muhamad Akrom, Universitas Dian Nuswantoro

Scopus: 58054974800 Google Scholar:  HqilwgYAAAAJ Sinta: 6741450  

References

M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, H.K. Dipojono, Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds, J Phys Conf Ser, 2673(1), 012014 (2023), https://doi.org/10.1088/1742-6596/2673/1/012014.

M. Akrom, Green corrosion inhibitors for iron alloys: a comprehensive review of integrating data-driven forecasting, density functional theory simulations, and experimental investigation. J Mult Mater Inf, 1(1), 22–37 (2024), https://doi.org/10. 62411/jimat.v1i1.10495

M. Akrom, S. Rustad, H.K. Dipojono, A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors, Phys Scr, 99(3), 036006 (2024), https://doi.org/10.1088/1402-4896/ad28a9.

S. Budi, M. Akrom, G.A. Trisnapradika, T. Sutojo, W.A.E. Prabowo, Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets, Scientific Journal of Informatics, 10(2), (2023), https://doi.org/10.15294/sji.v10i2.43929.

M. Akrom, S. Rustad, H.K. Dipojono, Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors, Results in Chemistry 6 (2023) 101126, https://doi.org/10.1016/j. rechem.2023.101126.

M. Akrom, S. Rustad, A.G. Saputro, H.K. Dipojono, Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors, Comput. Theor. Chem. 1229 (2023) 114307, https://doi.org/10.1016/ J.COMPTC.2023.114307.

M. Schuld, I. Sinayskiy, and F. Petruccione, The quest for a quantum support vector machine. Quantum Information Processing, 13(11), 2567-2586 (2014).

V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala, J.M. Chow, and J.M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212 (2019).

M. Akrom, S. Rustad, H.K. Dipojono, Prediction of Anti-Corrosion performance of new triazole derivatives via Machine learning, Comput. Theor. Chem. 1236 (2024), https://doi.org/10.1016/j.comptc.2024.114599.

M. Akrom, Investigation of natural extracts as green corrosion inhibitors in steel using density functional theory, Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102 (2022), https://doi.org/10.23960%2Fjtaf.v10i1.2927.

W. Cong, M. Lukin, and S. Choi, “Quantum Convolutional Neural Networks,” Nature Physics, vol. 15, pp. 1273–1278, 2019.

M. Akrom, S. Rustad, H.K. Dipojono. Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds. Materials Today Communications, 39, 108758 (2024), https://doi.org/10.1016/j.mtcomm.2024.108758.

M. Akrom, S. Rustad, H.K. Dipojono, SMILES-based machine learning enables the prediction of corrosion inhibition capacity, MRS Commun 14 (2024) 379–387, https://doi.org/10.1557/s43579-024-00551-6.

Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O'Brien, J. L. (2010). "Quantum computers." Nature, 464(7285), 45-53.

Aaronson, S., & Arkhipov, A. (2011). "The Computational Complexity of Linear Optics." Proceedings of the ACM Symposium on Theory of Computing (STOC).

Wang, D., Guo, F., & Guo, Y. (2016). "A novel solution to multi-class classification problem using support vector machine." Journal of Ambient Intelligence and Humanized Computing, 7(4), 563-571.

Chang, H., Liu, Y., & Bai, Y. (2017). "A new multi-category support vector machine algorithm." Soft Computing, 21(6), 1377-1389.

M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater. Today Commun. 35 (2023) 106402, https://doi.org/10.1016/J. MTCOMM.2023.106402.

M. Akrom, et al., DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract, Appl. Surf. Sci. 615 (2023), https://doi.org/10.1016/j. apsusc.2022.156319.

D. Alaminos, M.B. Salas, M.A. Fernández-Gámez, Quantum computing and deep learning methods for GDP growth forecasting, Comput. Econ. (2021) http://dx.doi.org/10.1007/s10614-021-10110-z.

F.J. García-Peñalvo, Desarrollo de estados de la cuestión robustos: Revisiones sistemáticas de literatura, Educ. Knowl. Soc. (EKS) 23 (2022) http://dx.doi.org/10.14201/eks.28600, URL http://repositorio.grial.eu/handle/grial/2568.

W. O’Quinn, S. Mao, Quantum machine learning: Recent advances and outlook, IEEE Wirel. Commun. 27 (3) (2020) 126–131, http://dx.doi.org/10.1109/MWC.001.1900341.

D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement, Int. J. Surg. 8 (5) (2010) 336–341, http://dx.doi.org/10.1016/j.ijsu.2010.02.007.

M. Petticrew, H. Roberts, Systematic Reviews in the Social Sciences: A Practical Guide, vol. 11, 2006, http://dx.doi.org/10.1002/9780470754887.

Y. Huang, H. Lei, X. Li, Q. Zhu, W. Ren, X. Liu, Quantum generative model with variable-depth circuit, Comput. Mater. Contin. 65 (1) (2020) 445–458, http://dx.doi.org/10.32604/cmc.2020.010390.

M. Srikumar, C.D. Hill, L.C.L. Hollenberg, Clustering and enhanced classification using a hybrid quantum autoencoder, Quantum Sci. Technol. 7 (1) (2021) 015020, http://dx.doi.org/10.1088/2058-9565/ac3c53.

D. Konar, S. Bhattacharyya, B.K. Panigrahi, E.C. Behrman, Qutrit-inspired fully self-supervised shallow quantum learning network for brain tumor segmentation, IEEE Trans. Neural Netw. Learn. Syst. (2021) 1–15, http://dx.doi.org/10. 1109/tnnls.2021.3077188, arXiv:2009.06767.

M. Lukac, K. Abdiyeva, M. Kameyama, CNOT-measure quantum neural networks, in: Proceedings of the International Symposium on Multiple-Valued Logic, Vol. 2018-May, IEEE Computer Society, 2018, pp. 186–191, http://dx.doi.org/10.1109/ISMVL.2018.00040.

Y. Li, R.G. Zhou, R. Xu, J. Luo, W. Hu, A quantum deep convolutional neural network for image recognition, Quantum Sci. Technol. 5 (4) (2020) http://dx.doi.org/10.1088/2058-9565/ab9f93.

M. Akrom, S. Rustad, H.K. Dipojono. Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds. Materials Today Quantum, 2, 100007 (2024), https://doi.org/10.1016/j.mtquan.2024.100007.

Downloads

Published

2025-12-29

Issue

Section

Articles