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Quantum Convolutional Neural Networks (QCNNs) have emerged
as one of the most promising architectures in Quantum Machine
Learning (QML), enabling hierarchical quantum feature extraction
and offering potential advantages over classical CNNs in expressivity
and scalability. This study presents a Systematic Literature Review
(SLR) on QCNN development from 2019 to 2025, covering
theoretical foundations, model architectures, noise resilience,
benchmark performance, and applications in materials informatics,

chemistry, image recognition, quantum phase classification, and
cybersecurity. The SLR followed PRISMA guidelines, screening 214
publications and selecting 47 primary studies. The review finds that
QCNNSs consistently outperform classical baselines in small-data and
high-dimensional regimes due to quantum feature maps and
entanglement-driven locality. Significant limitations include noise
sensitivity, limited qubit availability, and a lack of standardized
datasets for benchmarking. The novelty of this work lies in providing
the first comprehensive synthesis of QCNN research across theory,
simulations, and real-hardware deployment, offering a roadmap for
research gaps and future directions. The findings confirm that
QCNN s are strong candidates for NISQ-era applications, especially
in physics-informed learning.
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1. INTRODUCTION (Times New Roman, 10 pt, bold)

Quantum Machine Learning (QML) has emerged as a promising direction toward achieving
computational advantages beyond classical paradigms, particularly in problems involving high-
dimensional feature spaces, quantum correlations, and complex physical systems [1]-[5]. The rapid
development of noisy intermediate-scale quantum (NISQ) hardware has accelerated research on quantum
neural architectures designed to leverage entanglement and superposition to enhance learning capacity [6]-
[10]. Among the various architectures, Quantum Convolutional Neural Networks (QCNNs)—first
formalized by Cong et al. [11]—represent one of the most structurally innovative and potentially scalable
QML models.

QCNNs are inspired by classical Convolutional Neural Networks (CNNs), yet they integrate
convolutional quantum gates, pooling via entanglement manipulation, and hierarchical quantum circuits to
extract multi-scale correlations. Unlike generic Variational Quantum Circuits (VQCs), QCNNs employ
localized filtering operations, reducing circuit depth while preserving essential features. Early works
demonstrate that QCNNSs achieve near-optimal performance on quantum phase recognition, topological
order detection, and entanglement characterization, outperforming classical tensor-network methods under
certain regimes [12]-[15]. Subsequent research expanded QCNN capabilities toward classical data
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classification, hybrid quantum-classical feature extractors, and hardware-efficient QCNN variants
compatible with IBM Q, Rigetti, and IonQ devices [16]-[20].

Despite their promising potential, QCNN research remains fragmented across physics, chemistry,
materials science, and computer science literature. Existing review papers primarily cover general QML
architectures such as VQC, QNN, and quantum kernels [21]-[25], but none provide a comprehensive and
systematic investigation of QCNN-specific developments. As QCNN models continue to expand into
domains such as molecular property prediction, materials informatics, anomaly detection, cryptographic
pattern recognition, and small-scale image processing [26]-[30], the absence of an architecture-focused
review creates a significant knowledge gap.

Another challenge is that QCNN experiments are often limited by hardware constraints—such as
decoherence, shallow qubit connectivity, and noise accumulation—making it challenging to generalize
simulation-based results to real quantum processors. Moreover, there is no standardized benchmarking
protocol for QCNN performance across software frameworks (e.g., PennyLane, Qiskit, Cirq), nor is there
cross-domain evaluation on standard datasets. These issues complicate a holistic understanding of QCNN
progress, limitations, and applicability.

To address these gaps, this study conducts a Systematic Literature Review (SLR) of Quantum
Convolutional Neural Networks from 2019 to 2025 using the PRISMA methodology. The objectives of this
SLR are:

1. to consolidate and map QCNN research trends, including architectures, encoding strategies,

optimization algorithms, and hardware deployment;

2. to evaluate application domains of QCNNs in physics, materials science, chemistry, pattern

recognition, and cybersecurity;

3. to analyze limitations and open research challenges involving noise resilience, circuit depth,

scalability, and dataset availability;

4. to propose future research directions and opportunities for QCNN development in NISQ-era and

post-NISQ quantum systems.

The novelty of this work lies in its architecture-focused, cross-domain synthesis of QCNN
developments, offering the first comprehensive review of QCNN progress, challenges, and future pathways.
By providing a structured landscape of QCNN research, this SLR aims to support the scientific community
in developing more robust, scalable, and interpretable quantum convolutional models.

2. METHODS

This study employs a Systematic Literature Review (SLR) approach following the PRISMA 2020
guidelines to ensure that the review process is transparent, rigorous, and replicable. The SLR methodology
consisted of several sequential phases, beginning with the identification of relevant publications, followed
by screening through titles and abstracts, assessing full-text eligibility, and culminating in the final inclusion
of primary studies. These methodological steps were designed to construct a comprehensive and integrative
overview of Quantum Convolutional Neural Network (QCNN) research published between 2019 and 2025.
The literature search was conducted across five major academic databases widely recognized in the fields
of quantum computing and machine learning, namely Scopus, IEEE Xplore, SpringerLink, ACM Digital
Library, and arXiv (quant-ph, cs.LG, and cs.Al categories). These sources were selected due to their broad
disciplinary coverage and their established reputation for providing high-quality scientific publications. The
search strategy employed keyword combinations such as “quantum convolutional neural network,”
“QCNN,” “quantum convolution,” “quantum pooling,” and “variational quantum convolutional circuits.”
Boolean operators, exact-match quotation marks, and cross-referencing from relevant articles were applied
to enhance the precision and completeness of the search. The initial identification phase resulted in 214
articles, which were subsequently examined in more detail.

The screening phase involved removing duplicate papers and eliminating studies that were clearly
irrelevant based on their titles and abstracts. Articles that did not address QCNN architectures, did not
involve quantum convolutional operations, or focused solely on other QML models—such as quantum
neural networks, quantum kernel methods, or quantum support vector machines—were excluded. This
stage reduced the number of potential studies to 104, which were then subjected to full-text examination.
During the eligibility assessment, each article was evaluated based on methodological and thematic
relevance. Only papers that explicitly proposed, analyzed, or implemented QCNN architectures, provided
detailed descriptions of the quantum circuits, or reported empirical simulation or hardware results were
retained. Studies that lacked technical depth, consisted only of high-level conceptual discussions, or did not
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present experimental validation were excluded. After applying these criteria, 57 articles were removed,
leaving 47 primary studies for the final synthesis.

The data extraction process was carried out manually by two independent reviewers to minimize
selection bias and improve accuracy. Extracted information included bibliographic details, QCNN
architectural characteristics (such as qubit count, circuit depth, type of convolution and pooling gates, and
encoding strategies), application domains, evaluation protocols, metrics, hardware or simulators used, and
key findings and limitations reported by each study. This extraction process produced a structured dataset
that served as the basis for narrative synthesis and thematic analysis.

The data synthesis phase integrated findings from the selected studies to reveal methodological
patterns, architectural trends, and application trajectories of QCNN models over time. A descriptive
quantitative mapping was used to identify publication trends, dominant research themes, and the evolution
of QCNN structures. Narrative synthesis enabled a richer comparison of QCNN architectures against
classical convolutional networks and other quantum machine learning models, with particular attention to
performance advantages in small-data regimes, noise resilience, representational efficiency, and scalability.
The thematic analysis also uncovered persistent challenges in QCNN research, including hardware
limitations, noise accumulation, difficulties in scaling QCNN circuits, and the lack of standardized datasets
for benchmarking.

To enhance methodological validity, several bias mitigation techniques were implemented.
Triangulation was performed at two levels: database triangulation ensured broad literature coverage, while
researcher triangulation increased the reliability of study selection and data extraction. An audit trail was
maintained to document search decisions, inclusion and exclusion justifications, and data extraction notes,
ensuring full transparency and traceability. Through this systematic and comprehensive methodology, the
SLR provides a robust foundation for understanding QCNN developments and identifying future research
opportunities toward more scalable, expressive, and hardware-compatible QCNN architectures.

3. RESULTS AND DISCUSSION

The systematic review of 47 primary studies reveals significant progress in the development,
implementation, and application of Quantum Convolutional Neural Networks (QCNN) from 2019 to 2025.
The findings illustrate how QCNN architectures have evolved from early theoretical constructs into
increasingly practical models deployed on NISQ (Noisy Intermediate-Scale Quantum) hardware. The
discussion in this section synthesizes these advancements across four key dimensions: architectural
evolution, application domains, performance benchmarking, and identified research gaps.

The first significant result concerns the evolution of QCNN architectures. Early implementations
closely followed the hierarchical structure introduced by Cong et al. (2019), which integrates parametrized
quantum convolution layers with pooling operations that selectively remove qubits while preserving
relevant entanglement structures. This design significantly reduces circuit depth, making QCNNs more
suitable for NISQ devices compared to generic variational quantum circuits. Subsequent studies expanded
this architecture by introducing hybrid QCNN variants in which classical neural layers precede or follow
quantum convolution blocks, enabling the processing of classical data such as images or material
descriptors. More sophisticated designs also emerged, including hardware-efficient QCNNs optimized for
IBM Q, IonQ, and Rigetti systems through the use of native gate sets and connectivity-aware circuit
transpilation. These architectural innovations demonstrate a trend toward improving both the expressive
power and hardware compatibility of QCNNS, addressing one of the main challenges in practical QML
deployment.

A second major set of findings pertains to the application domains of QCNNSs, which have expanded
far beyond their initial use in quantum phase classification. The most frequent application remains quantum
many-body physics, where QCNNSs are used to identify topological phases, detect symmetry-protected
quantum states, and estimate entanglement entropy with high accuracy. In these applications, QCNNs
consistently outperform classical convolutional or tensor-network-based methods, mainly when the data
exhibits inherently quantum correlations. Beyond physics, researchers have applied QCNNs to classical
image classification tasks involving reduced-resolution MNIST or Fashion-MNIST datasets. Although
QCNNSs are constrained by qubit availability, results indicate that they perform competitively in small-data
settings, leveraging quantum feature embeddings to enhance generalization. QCNNs have also gained
traction in materials informatics, including molecular property classification, catalyst prediction, and
structural phase recognition. These applications highlight the potential of QCNNs to extract multi-scale
features more efficiently than classical architectures when data samples are limited or highly correlated.
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Emerging fields such as cybersecurity have also begun adopting QCNNs for anomaly detection and
lightweight pattern recognition, indicating early steps toward broader cross-disciplinary integration.

The third set of results focuses on comparative performance benchmarking. Across nearly all
experimental contexts, QCNNSs outperform classical CNN baselines when the dataset size is small or the
underlying feature manifold exhibits high entanglement or nonlinearity. QCNNSs also demonstrate superior
performance compared to other QML models such as Quantum Neural Networks, Quantum Kernels, or
QSVM, particularly in tasks requiring hierarchical feature extraction. Studies evaluating QCNNSs on real
quantum hardware further reveal that pooling operations—by effectively reducing the number of qubits
and circuit depth—contribute to increased noise resilience. Hardware experiments indicate that QCNN
models maintain relatively stable performance even in the presence of decoherence and gate imperfections,
though performance degradation increases sharply as circuit depth exceeds hardware coherence thresholds.
Compared to traditional variational circuits, QCNNs achieve more efficient parameter scaling and often
require fewer trainable parameters to reach comparable or superior accuracy. This suggests that QCNNs
provide a more structured and scalable approach to quantum learning in the NISQ era.

Despite these promising results, the SLR identifies several persistent limitations and research gaps that
hinder broader QCNN adoption. A key challenge is the scarcity of standardized datasets suitable for
quantum convolutional processing, which leads to inconsistent benchmarking across studies. Many
experiments rely on artificially downsampled or synthetic datasets that may not fully represent real-world
complexity. Hardware limitations—particularly qubit count, connectivity, and noise—remain significant
barriers to scaling QCNNs beyond 10-20 qubits. Furthermore, while QCNNSs are theoretically efficient at
learning hierarchical structures, few studies investigate their interpretability or analyze how quantum
convolution layers encode features across circuit depths. Limited research has also explored QCNN
performance in regression tasks or continuous-valued prediction problems, leaving most QCNN work
focused solely on classification. Finally, optimization challenges persist, as QCNN training often suffers
from barren plateaus or gradient instability, especially in deeper circuits or poorly initialized parameter
regimes.

Overall, the synthesis of the 47 studies demonstrates that QCNNs are among the most promising
quantum machine learning architectures for the NISQ era, offering strong performance in small-data
environments, enhanced expressivity for highly correlated systems, and improved noise resilience
compared to other variational quantum models. Their hierarchical and structured design makes them
particularly suitable for tasks involving multiscale interactions, such as materials modeling and quantum
many-body analysis. However, significant opportunities remain for advancing the field through
improvements in interpretability, dataset standardization, hardware-efficient circuit design, and
optimization techniques. These directions are essential for enabling the transition of QCNNs from
experimental prototypes toward practical, domain-impacting quantum learning systems.

4. CONCLUSION
This systematic literature review presents a comprehensive synthesis of the development,

implementation, and application of Quantum Convolutional Neural Networks (QCNNSs) from 2019 to 2025.
Through a rigorous PRISMA-guided methodology, 47 primary studies were identified and analyzed to
assess the architectural advancements, algorithmic innovations, performance characteristics, and emerging
challenges within the QCNN landscape. The findings reveal that QCNNs have evolved from foundational
theoretical constructs into versatile quantum machine learning models capable of addressing complex tasks
across quantum physics, materials science, chemistry, cybersecurity, and small-scale image recognition.
Their hierarchical structure—integrating quantum convolution and pooling operations—offers advantages
in feature extraction, parameter efficiency, and noise resilience, making QCNNs particularly well-suited
for NISQ devices. Comparative analyses demonstrate that QCNN5s often outperform classical CNNs and
other QML models in data-constrained scenarios and in tasks requiring the representation of quantum
correlations or multiscale features.

Despite these promising developments, the review also identifies significant challenges that must be
addressed before QCNNs can achieve broader applicability. Limitations include restricted qubit
availability, noise accumulation in deep circuits, lack of standardized datasets, and the absence of
benchmarking frameworks that ensure fair cross-study comparison. Furthermore, issues related to circuit
interpretability, optimization stability, and scalability remain open research questions. Nevertheless, the
continuous expansion of QCNN research, along with improvements in quantum hardware, suggests strong
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potential for QCNNSs to become a central architecture in future quantum machine learning systems. This
review therefore provides not only a consolidated understanding of QCNN progress but also a roadmap for
future research directions, emphasizing the need for hardware-efficient design, interpretable quantum
feature mapping, standardized evaluation protocols, and exploration of QCNNs beyond classification tasks.
By addressing these challenges, QCNNs may become a foundational tool for leveraging quantum
advantages in both scientific and industrial applications.
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