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 Quantum Convolutional Neural Networks (QCNNs) have emerged 

as one of the most promising architectures in Quantum Machine 

Learning (QML), enabling hierarchical quantum feature extraction 

and offering potential advantages over classical CNNs in expressivity 

and scalability. This study presents a Systematic Literature Review 

(SLR) on QCNN development from 2019 to 2025, covering 

theoretical foundations, model architectures, noise resilience, 

benchmark performance, and applications in materials informatics, 

chemistry, image recognition, quantum phase classification, and 

cybersecurity. The SLR followed PRISMA guidelines, screening 214 

publications and selecting 47 primary studies. The review finds that 

QCNNs consistently outperform classical baselines in small-data and 

high-dimensional regimes due to quantum feature maps and 

entanglement-driven locality. Significant limitations include noise 

sensitivity, limited qubit availability, and a lack of standardized 

datasets for benchmarking. The novelty of this work lies in providing 

the first comprehensive synthesis of QCNN research across theory, 

simulations, and real-hardware deployment, offering a roadmap for 

research gaps and future directions. The findings confirm that 

QCNNs are strong candidates for NISQ-era applications, especially 

in physics-informed learning. 
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1. INTRODUCTION (Times New Roman, 10 pt, bold) 
Quantum Machine Learning (QML) has emerged as a promising direction toward achieving 

computational advantages beyond classical paradigms, particularly in problems involving high-

dimensional feature spaces, quantum correlations, and complex physical systems [1]-[5]. The rapid 

development of noisy intermediate-scale quantum (NISQ) hardware has accelerated research on quantum 

neural architectures designed to leverage entanglement and superposition to enhance learning capacity [6]- 

[10]. Among the various architectures, Quantum Convolutional Neural Networks (QCNNs)—first 

formalized by Cong et al. [11]—represent one of the most structurally innovative and potentially scalable 

QML models. 

QCNNs are inspired by classical Convolutional Neural Networks (CNNs), yet they integrate 

convolutional quantum gates, pooling via entanglement manipulation, and hierarchical quantum circuits to 

extract multi-scale correlations. Unlike generic Variational Quantum Circuits (VQCs), QCNNs employ 

localized filtering operations, reducing circuit depth while preserving essential features. Early works 

demonstrate that QCNNs achieve near-optimal performance on quantum phase recognition, topological 

order detection, and entanglement characterization, outperforming classical tensor-network methods under 

certain regimes [12]-[15]. Subsequent research expanded QCNN capabilities toward classical data 
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classification, hybrid quantum-classical feature extractors, and hardware-efficient QCNN variants 

compatible with IBM Q, Rigetti, and IonQ devices [16]-[20]. 

Despite their promising potential, QCNN research remains fragmented across physics, chemistry, 

materials science, and computer science literature. Existing review papers primarily cover general QML 

architectures such as VQC, QNN, and quantum kernels [21]-[25], but none provide a comprehensive and 

systematic investigation of QCNN-specific developments. As QCNN models continue to expand into 

domains such as molecular property prediction, materials informatics, anomaly detection, cryptographic 

pattern recognition, and small-scale image processing [26]-[30], the absence of an architecture-focused 

review creates a significant knowledge gap. 

Another challenge is that QCNN experiments are often limited by hardware constraints—such as 

decoherence, shallow qubit connectivity, and noise accumulation—making it challenging to generalize 

simulation-based results to real quantum processors. Moreover, there is no standardized benchmarking 

protocol for QCNN performance across software frameworks (e.g., PennyLane, Qiskit, Cirq), nor is there 

cross-domain evaluation on standard datasets. These issues complicate a holistic understanding of QCNN 

progress, limitations, and applicability. 

To address these gaps, this study conducts a Systematic Literature Review (SLR) of Quantum 

Convolutional Neural Networks from 2019 to 2025 using the PRISMA methodology. The objectives of this 

SLR are: 

1. to consolidate and map QCNN research trends, including architectures, encoding strategies, 

optimization algorithms, and hardware deployment; 

2. to evaluate application domains of QCNNs in physics, materials science, chemistry, pattern 

recognition, and cybersecurity; 

3. to analyze limitations and open research challenges involving noise resilience, circuit depth, 

scalability, and dataset availability; 

4. to propose future research directions and opportunities for QCNN development in NISQ-era and 

post-NISQ quantum systems. 

The novelty of this work lies in its architecture-focused, cross-domain synthesis of QCNN 

developments, offering the first comprehensive review of QCNN progress, challenges, and future pathways. 

By providing a structured landscape of QCNN research, this SLR aims to support the scientific community 

in developing more robust, scalable, and interpretable quantum convolutional models. 

 

2. METHODS 

 This study employs a Systematic Literature Review (SLR) approach following the PRISMA 2020 

guidelines to ensure that the review process is transparent, rigorous, and replicable. The SLR methodology 

consisted of several sequential phases, beginning with the identification of relevant publications, followed 

by screening through titles and abstracts, assessing full-text eligibility, and culminating in the final inclusion 

of primary studies. These methodological steps were designed to construct a comprehensive and integrative 

overview of Quantum Convolutional Neural Network (QCNN) research published between 2019 and 2025. 

The literature search was conducted across five major academic databases widely recognized in the fields 

of quantum computing and machine learning, namely Scopus, IEEE Xplore, SpringerLink, ACM Digital 

Library, and arXiv (quant-ph, cs.LG, and cs.AI categories). These sources were selected due to their broad 

disciplinary coverage and their established reputation for providing high-quality scientific publications. The 

search strategy employed keyword combinations such as “quantum convolutional neural network,” 

“QCNN,” “quantum convolution,” “quantum pooling,” and “variational quantum convolutional circuits.” 

Boolean operators, exact-match quotation marks, and cross-referencing from relevant articles were applied 

to enhance the precision and completeness of the search. The initial identification phase resulted in 214 

articles, which were subsequently examined in more detail. 

 The screening phase involved removing duplicate papers and eliminating studies that were clearly 

irrelevant based on their titles and abstracts. Articles that did not address QCNN architectures, did not 

involve quantum convolutional operations, or focused solely on other QML models—such as quantum 

neural networks, quantum kernel methods, or quantum support vector machines—were excluded. This 

stage reduced the number of potential studies to 104, which were then subjected to full-text examination. 

During the eligibility assessment, each article was evaluated based on methodological and thematic 

relevance. Only papers that explicitly proposed, analyzed, or implemented QCNN architectures, provided 

detailed descriptions of the quantum circuits, or reported empirical simulation or hardware results were 

retained. Studies that lacked technical depth, consisted only of high-level conceptual discussions, or did not 
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present experimental validation were excluded. After applying these criteria, 57 articles were removed, 

leaving 47 primary studies for the final synthesis. 

 The data extraction process was carried out manually by two independent reviewers to minimize 

selection bias and improve accuracy. Extracted information included bibliographic details, QCNN 

architectural characteristics (such as qubit count, circuit depth, type of convolution and pooling gates, and 

encoding strategies), application domains, evaluation protocols, metrics, hardware or simulators used, and 

key findings and limitations reported by each study. This extraction process produced a structured dataset 

that served as the basis for narrative synthesis and thematic analysis. 

 The data synthesis phase integrated findings from the selected studies to reveal methodological 

patterns, architectural trends, and application trajectories of QCNN models over time. A descriptive 

quantitative mapping was used to identify publication trends, dominant research themes, and the evolution 

of QCNN structures. Narrative synthesis enabled a richer comparison of QCNN architectures against 

classical convolutional networks and other quantum machine learning models, with particular attention to 

performance advantages in small-data regimes, noise resilience, representational efficiency, and scalability. 

The thematic analysis also uncovered persistent challenges in QCNN research, including hardware 

limitations, noise accumulation, difficulties in scaling QCNN circuits, and the lack of standardized datasets 

for benchmarking. 

 To enhance methodological validity, several bias mitigation techniques were implemented. 

Triangulation was performed at two levels: database triangulation ensured broad literature coverage, while 

researcher triangulation increased the reliability of study selection and data extraction. An audit trail was 

maintained to document search decisions, inclusion and exclusion justifications, and data extraction notes, 

ensuring full transparency and traceability. Through this systematic and comprehensive methodology, the 

SLR provides a robust foundation for understanding QCNN developments and identifying future research 

opportunities toward more scalable, expressive, and hardware-compatible QCNN architectures. 

 

3. RESULTS AND DISCUSSION 
The systematic review of 47 primary studies reveals significant progress in the development, 

implementation, and application of Quantum Convolutional Neural Networks (QCNN) from 2019 to 2025. 

The findings illustrate how QCNN architectures have evolved from early theoretical constructs into 

increasingly practical models deployed on NISQ (Noisy Intermediate-Scale Quantum) hardware. The 

discussion in this section synthesizes these advancements across four key dimensions: architectural 

evolution, application domains, performance benchmarking, and identified research gaps. 

The first significant result concerns the evolution of QCNN architectures. Early implementations 

closely followed the hierarchical structure introduced by Cong et al. (2019), which integrates parametrized 

quantum convolution layers with pooling operations that selectively remove qubits while preserving 

relevant entanglement structures. This design significantly reduces circuit depth, making QCNNs more 

suitable for NISQ devices compared to generic variational quantum circuits. Subsequent studies expanded 

this architecture by introducing hybrid QCNN variants in which classical neural layers precede or follow 

quantum convolution blocks, enabling the processing of classical data such as images or material 

descriptors. More sophisticated designs also emerged, including hardware-efficient QCNNs optimized for 

IBM Q, IonQ, and Rigetti systems through the use of native gate sets and connectivity-aware circuit 

transpilation. These architectural innovations demonstrate a trend toward improving both the expressive 

power and hardware compatibility of QCNNs, addressing one of the main challenges in practical QML 

deployment. 

A second major set of findings pertains to the application domains of QCNNs, which have expanded 

far beyond their initial use in quantum phase classification. The most frequent application remains quantum 

many-body physics, where QCNNs are used to identify topological phases, detect symmetry-protected 

quantum states, and estimate entanglement entropy with high accuracy. In these applications, QCNNs 

consistently outperform classical convolutional or tensor-network-based methods, mainly when the data 

exhibits inherently quantum correlations. Beyond physics, researchers have applied QCNNs to classical 

image classification tasks involving reduced-resolution MNIST or Fashion-MNIST datasets. Although 

QCNNs are constrained by qubit availability, results indicate that they perform competitively in small-data 

settings, leveraging quantum feature embeddings to enhance generalization. QCNNs have also gained 

traction in materials informatics, including molecular property classification, catalyst prediction, and 

structural phase recognition. These applications highlight the potential of QCNNs to extract multi-scale 

features more efficiently than classical architectures when data samples are limited or highly correlated. 
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Emerging fields such as cybersecurity have also begun adopting QCNNs for anomaly detection and 

lightweight pattern recognition, indicating early steps toward broader cross-disciplinary integration. 

The third set of results focuses on comparative performance benchmarking. Across nearly all 

experimental contexts, QCNNs outperform classical CNN baselines when the dataset size is small or the 

underlying feature manifold exhibits high entanglement or nonlinearity. QCNNs also demonstrate superior 

performance compared to other QML models such as Quantum Neural Networks, Quantum Kernels, or 

QSVM, particularly in tasks requiring hierarchical feature extraction. Studies evaluating QCNNs on real 

quantum hardware further reveal that pooling operations—by effectively reducing the number of qubits 

and circuit depth—contribute to increased noise resilience. Hardware experiments indicate that QCNN 

models maintain relatively stable performance even in the presence of decoherence and gate imperfections, 

though performance degradation increases sharply as circuit depth exceeds hardware coherence thresholds. 

Compared to traditional variational circuits, QCNNs achieve more efficient parameter scaling and often 

require fewer trainable parameters to reach comparable or superior accuracy. This suggests that QCNNs 

provide a more structured and scalable approach to quantum learning in the NISQ era. 

Despite these promising results, the SLR identifies several persistent limitations and research gaps that 

hinder broader QCNN adoption. A key challenge is the scarcity of standardized datasets suitable for 

quantum convolutional processing, which leads to inconsistent benchmarking across studies. Many 

experiments rely on artificially downsampled or synthetic datasets that may not fully represent real-world 

complexity. Hardware limitations—particularly qubit count, connectivity, and noise—remain significant 

barriers to scaling QCNNs beyond 10–20 qubits. Furthermore, while QCNNs are theoretically efficient at 

learning hierarchical structures, few studies investigate their interpretability or analyze how quantum 

convolution layers encode features across circuit depths. Limited research has also explored QCNN 

performance in regression tasks or continuous-valued prediction problems, leaving most QCNN work 

focused solely on classification. Finally, optimization challenges persist, as QCNN training often suffers 

from barren plateaus or gradient instability, especially in deeper circuits or poorly initialized parameter 

regimes. 

Overall, the synthesis of the 47 studies demonstrates that QCNNs are among the most promising 

quantum machine learning architectures for the NISQ era, offering strong performance in small-data 

environments, enhanced expressivity for highly correlated systems, and improved noise resilience 

compared to other variational quantum models. Their hierarchical and structured design makes them 

particularly suitable for tasks involving multiscale interactions, such as materials modeling and quantum 

many-body analysis. However, significant opportunities remain for advancing the field through 

improvements in interpretability, dataset standardization, hardware-efficient circuit design, and 

optimization techniques. These directions are essential for enabling the transition of QCNNs from 

experimental prototypes toward practical, domain-impacting quantum learning systems. 

 

4. CONCLUSION 

This systematic literature review presents a comprehensive synthesis of the development, 

implementation, and application of Quantum Convolutional Neural Networks (QCNNs) from 2019 to 2025. 

Through a rigorous PRISMA-guided methodology, 47 primary studies were identified and analyzed to 

assess the architectural advancements, algorithmic innovations, performance characteristics, and emerging 

challenges within the QCNN landscape. The findings reveal that QCNNs have evolved from foundational 

theoretical constructs into versatile quantum machine learning models capable of addressing complex tasks 

across quantum physics, materials science, chemistry, cybersecurity, and small-scale image recognition. 

Their hierarchical structure—integrating quantum convolution and pooling operations—offers advantages 

in feature extraction, parameter efficiency, and noise resilience, making QCNNs particularly well-suited 

for NISQ devices. Comparative analyses demonstrate that QCNNs often outperform classical CNNs and 

other QML models in data-constrained scenarios and in tasks requiring the representation of quantum 

correlations or multiscale features. 

Despite these promising developments, the review also identifies significant challenges that must be 

addressed before QCNNs can achieve broader applicability. Limitations include restricted qubit 

availability, noise accumulation in deep circuits, lack of standardized datasets, and the absence of 

benchmarking frameworks that ensure fair cross-study comparison. Furthermore, issues related to circuit 

interpretability, optimization stability, and scalability remain open research questions. Nevertheless, the 

continuous expansion of QCNN research, along with improvements in quantum hardware, suggests strong 
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potential for QCNNs to become a central architecture in future quantum machine learning systems. This 

review therefore provides not only a consolidated understanding of QCNN progress but also a roadmap for 

future research directions, emphasizing the need for hardware-efficient design, interpretable quantum 

feature mapping, standardized evaluation protocols, and exploration of QCNNs beyond classification tasks. 

By addressing these challenges, QCNNs may become a foundational tool for leveraging quantum 

advantages in both scientific and industrial applications. 
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