Framework for Early Prediction of Lithium-Ion Battery Lifetime: A Hybrid Quantum-Classical Approach

Authors

  • Sheilla Rully Anggita Universitas Islam Negeri Walisongo
  • Muhamad Akrom Universitas Dian Nuswantoro

DOI:

https://doi.org/10.62411/jimat.v2i2.15055

Abstract

Accurately predicting the lifetime of lithium-ion batteries during early charge–discharge cycles remains a significant challenge due to the nonlinear and weakly expressed degradation dynamics in the initial stages of operation. Classical machine learning (ML) models—although effective in pattern recognition—often face limitations in modeling complex correlations within small, high-dimensional datasets. To address these challenges, this study proposes a Hybrid Quantum–Classical Machine Learning (HQML) framework that integrates a Variational Quantum Circuit (VQC) as a quantum feature encoder with a Gradient Boosting Regressor (GBR) as the classical learner. The proposed approach is implemented using the Qiskit Aer simulator on the MIT Battery Degradation Dataset (124 cells, 42 engineered features). By encoding multi-source degradation descriptors (voltage, capacity, temperature, internal resistance) into Hilbert space via amplitude and angle encoding, the HQML model captures intricate nonlinear feature interactions that are inaccessible to conventional kernels. Experimental results demonstrate that the hybrid model achieves an RMSE of 93 cycles and an R² of 0.94, outperforming the best classical baseline (SVM + Wrapper selection, RMSE = 115, R² = 0.90). Furthermore, quantum observables analysis reveals interpretable correlations between entanglement strengths and physical degradation indicators. These results highlight the potential of quantum machine learning as a powerful paradigm for high-fidelity battery prognostics in the early-life regime.

Author Biography

Muhamad Akrom, Universitas Dian Nuswantoro

Scopus: 58054974800 Google Scholar:  HqilwgYAAAAJ Sinta: 6741450  

References

M. Benedetti, E. Lloyd, S. Sack, M. Fiorentini, Parameterized quantum circuits as machine learning models, Quantum Sci. Technol., 4(4), (2019), http://dx.doi.org/10.1088/2058-9565/ab4eb5, arXiv:1906.07682.

M. Benedetti, J. Realpe-Gómez, and R. Biswas, Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models. Physical Review A, 99(4), 042306 (2019).

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum Machine Learning. Nature, 549(7671), 195-202 (2017).

S. Budi, M. Akrom, G.A. Trisnapradika, T. Sutojo, W.A.E. Prabowo, Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets, Scientific Journal of Informatics, 10(2), (2023), https://doi.org/10.15294/sji.v10i2.43929.

Fei, Z., Fang, X., Jin, X., & Zhao, Y. (2021). Early prediction of battery lifetime via a machine learning-based framework. Energy, 225, 120205.

S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411.

M. Schuld, I. Sinayskiy, and F. Petruccione, The quest for a quantum support vector machine. Quantum Information Processing, 13(11), 2567-2586 (2014).

V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala, J.M. Chow, and J.M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212 (2019).

M. Akrom, S. Rustad, H.K. Dipojono, A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors, Phys Scr, 99(3), 036006 (2024), https://doi.org/10.1088/1402-4896/ad28a9.

M. Akrom, Investigation of natural extracts as green corrosion inhibitors in steel using density functional theory, Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102 (2022), https://doi.org/10.23960%2Fjtaf.v10i1.2927.

Nielsen, M. A., & Chuang, I. L. (2010). "Quantum Computation and Quantum Information: 10th Anniversary Edition." Cambridge University Press.

Preskill, J. (1998). "Quantum Computing: Prologue." arXiv preprint quant-ph/9712048.

Mermin, N. D. (2007). "Quantum Computer Science: An Introduction." Cambridge University Press.

Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O'Brien, J. L. (2010). "Quantum computers." Nature, 464(7285), 45-53.

Aaronson, S., & Arkhipov, A. (2011). "The Computational Complexity of Linear Optics." Proceedings of the ACM Symposium on Theory of Computing (STOC).

Wang, D., Guo, F., & Guo, Y. (2016). "A novel solution to multi-class classification problem using support vector machine." Journal of Ambient Intelligence and Humanized Computing, 7(4), 563-571.

Chang, H., Liu, Y., & Bai, Y. (2017). "A new multi-category support vector machine algorithm." Soft Computing, 21(6), 1377-1389.

M.-Z. Ai, Y. Ding, Y. Ban, J.D. Martín-Guerrero, J. Casanova, J.-M. Cui, Y.-F. Huang, X. Chen, C.-F. Li, G.-C. Guo, Experimentally realizing efficient quantum control with reinforcement learning, 2021, arXiv:2101.09020.

M. Akrom, S. Rustad, H.K. Dipojono. Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds. Materials Today Communications, 39, 108758 (2024), https://doi.org/10.1016/j.mtcomm.2024.108758.

D. Alaminos, M.B. Salas, M.A. Fernández-Gámez, Quantum computing and deep learning methods for GDP growth forecasting, Comput. Econ. (2021) http://dx.doi.org/10.1007/s10614-021-10110-z.

F.J. García-Peñalvo, Desarrollo de estados de la cuestión robustos: Revisiones sistemáticas de literatura, Educ. Knowl. Soc. (EKS) 23 (2022) http://dx.doi.org/10.14201/eks.28600, URL http://repositorio.grial.eu/handle/grial/2568.

W. O’Quinn, S. Mao, Quantum machine learning: Recent advances and outlook, IEEE Wirel. Commun. 27 (3) (2020) 126–131, http://dx.doi.org/10.1109/MWC.001.1900341.

D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement, Int. J. Surg. 8 (5) (2010) 336–341, http://dx.doi.org/10.1016/j.ijsu.2010.02.007.

M. Petticrew, H. Roberts, Systematic Reviews in the Social Sciences: A Practical Guide, vol. 11, 2006, http://dx.doi.org/10.1002/9780470754887.

Y. Huang, H. Lei, X. Li, Q. Zhu, W. Ren, X. Liu, Quantum generative model with variable-depth circuit, Comput. Mater. Contin. 65 (1) (2020) 445–458, http://dx.doi.org/10.32604/cmc.2020.010390.

M. Srikumar, C.D. Hill, L.C.L. Hollenberg, Clustering and enhanced classification using a hybrid quantum autoencoder, Quantum Sci. Technol. 7 (1) (2021) 015020, http://dx.doi.org/10.1088/2058-9565/ac3c53.

D. Konar, S. Bhattacharyya, B.K. Panigrahi, E.C. Behrman, Qutrit-inspired fully self-supervised shallow quantum learning network for brain tumor segmentation, IEEE Trans. Neural Netw. Learn. Syst. (2021) 1–15, http://dx.doi.org/10. 1109/tnnls.2021.3077188, arXiv:2009.06767.

M. Lukac, K. Abdiyeva, M. Kameyama, CNOT-measure quantum neural networks, in: Proceedings of the International Symposium on Multiple-Valued Logic, Vol. 2018-May, IEEE Computer Society, 2018, pp. 186–191, http://dx.doi.org/10.1109/ISMVL.2018.00040.

Y. Li, R.G. Zhou, R. Xu, J. Luo, W. Hu, A quantum deep convolutional neural network for image recognition, Quantum Sci. Technol. 5 (4) (2020) http://dx.doi.org/10.1088/2058-9565/ab9f93.

M. Akrom, DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor, Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, 8(1), 42-48 (2022). http://dx.doi.org/10.30738/st.vol8.no1.a11775.

H. Wang, J. Zhao, B. Wang, L. Tong, A quantum approximate optimization algorithm with metalearning for maxcut problem and its simulation via tensorflow quantum, Math. Probl. Eng. 2021 (2021) http://dx.doi.org/10.1155/2021/6655455.

A. Ceschini, A. Rosato, M. Panella, Design of an LSTM cell on a quantum hardware, IEEE Trans. Circuits Syst. II 69 (3) (2022) 1822–1826, http://dx.doi.org/10.1109/TCSII.2021.3126204.

Y.-Y. Hong, C.J.E. Arce, T.-W. Huang, A robust hybrid classical and quantum model for short-term wind speed forecasting, IEEE Access 11 (2023) 90811–90824, http://dx.doi.org/10.1109/ACCESS.2023.3308053.

S.Y.-C. Chen, Asynchronous training of quantum reinforcement learning, Procedia Comput. Sci. 222 (2023) 321–330, http://dx.doi.org/10.1016/j.procs.2023.08.171, International Neural Network Society Workshop on Deep Learning Innovations and Applications (INNS DLIA 2023).

J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2 (2018) 79, http://dx.doi.org/10.22331/q-2018-08-06-79.

M. Akrom, S. Rustad, H.K. Dipojono. Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds. Materials Today Quantum, 2, 100007 (2024), https://doi.org/10.1016/j.mtquan.2024.100007.

M. Akrom, Quantum machine learning for corrosion resistance in stainless steel, Materials Today Quantum, 3, 100013 (2024), https://doi.org/10.1016/j.mtquan.2024.100013.

R. Sharma, B. Kaushik, N.K. Gondhi, M. Tahir, M.K.I. Rahmani, Quantum particle swarm optimization based convolutional neural network for handwritten script recognition, Comput. Mater. Contin. 71 (3) (2022) 5855–5873, http://dx.doi.org/10.32604/cmc.2022.024232.

M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, H.K. Dipojono, Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds, J Phys Conf Ser, 2673(1), 012014 (2023), https://doi.org/10.1088/1742-6596/2673/1/012014.

M. Akrom, A comprehensive approach utilizing quantum machine learning in the study of corrosion inhibition on quinoxaline compounds, Artificial Intelligence Chemistry, 2(2), 100073 (2024), https://doi.org/10.1016/j.aichem.2024.100073.

Downloads

Published

2025-11-26