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Accurately predicting the lifetime of lithium-ion batteries during
early charge—discharge cycles remains a significant challenge due to
the nonlinear and weakly expressed degradation dynamics in the
initial stages of operation. Classical machine learning (ML)
models—although effective in pattern recognition—often face
limitations in modeling complex correlations within small, high-
dimensional datasets. To address these challenges, this study
proposes a Hybrid Quantum—Classical Machine Learning (HQML)
framework that integrates a Variational Quantum Circuit (VQC) as a
quantum feature encoder with a Gradient Boosting Regressor (GBR)
as the classical learner. The proposed approach is implemented using
the Qiskit Aer simulator on the MIT Battery Degradation Dataset
(124 cells, 42 engineered features). By encoding multi-source
degradation descriptors (voltage, capacity, temperature, internal
resistance) into Hilbert space via amplitude and angle encoding, the
HQML model captures intricate nonlinear feature interactions that
are inaccessible to conventional kernels. Experimental results
demonstrate that the hybrid model achieves an RMSE of 93 cycles
and an R? of 0.94, outperforming the best classical baseline (SVM +
Wrapper selection, RMSE = 115, R? = 0.90). Furthermore, quantum
observables analysis reveals interpretable correlations between
entanglement strengths and physical degradation indicators. These
results highlight the potential of quantum machine learning as a
powerful paradigm for high-fidelity battery prognostics in the early-
life regime.
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1. INTRODUCTION

Lithium-ion batteries (LIBs) have become the dominant energy storage technology for consumer
electronics, electric vehicles, and smart grids due to their high energy density, low self-discharge rate, and
long cycle life. Nevertheless, the gradual capacity fading caused by internal electrochemical degradation
remains a critical barrier to reliability and safety [1]. Early prediction of battery lifetime—defined as the
number of charge—discharge cycles until the capacity drops to 80% of its nominal value—is essential for
optimizing production, accelerating design, and preventing catastrophic failures [2].

Traditional physics-based degradation models rely on empirical or semi-empirical relationships
between degradation indicators (e.g., solid electrolyte interphase (SEI) growth, lithium plating, impedance
increase) and cycle number [3]. While these models capture mechanistic insight, their calibration requires
detailed electrochemical measurements, limiting scalability. Consequently, data-driven approaches based
on machine learning (ML) have gained traction. These models treat the battery as a black-box system,
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mapping observable features such as voltage, current, temperature, and internal resistance to lifetime
outcomes [4].

Fei et al. (2021) [5] introduced a pioneering ML framework for early-cycle battery lifetime prediction
using 42 handcrafted features derived from the first 100 charge—discharge cycles of the MIT Battery
Dataset. Their model employed feature selection techniques—filter, wrapper, and embedded methods—
alongside six ML algorithms, including support vector machines (SVMs), Gaussian process regression
(GPR), and random forests (RFs). Among these, the wrapper-based SVM achieved the best performance
(RMSE = 115 cycles, R?=0.90). Despite its success, several intrinsic limitations persist: 1) Limited Kernel
Expressivity: Classical SVM and GPR rely on kernels that project data into finite-dimensional feature
spaces, constraining their ability to capture high-order nonlinear relationships; 2) Small-Sample Instability:
Battery datasets typically consist of fewer than 200 samples, causing deep neural networks to overfit and
ML models to underperform in generalization; and 3) Feature Correlation Complexity: Physical features
(temperature, voltage, and internal resistance) exhibit non-trivial entanglement across temporal and spatial
dimensions, which linear or polynomial transformations cannot adequately model.

Recent advances in quantum machine learning (QML) provide a new computational paradigm to
overcome these issues. By leveraging quantum superposition and entanglement, QML can embed classical
data into exponentially larger Hilbert spaces, enabling more expressive feature transformations without
requiring a proportional increase in parameters or data volume. This capability makes QML inherently
suitable for small yet complex scientific datasets [6]-[12].

2. RELATED WORK
2.1. Machine Learning for Battery Lifetime Prediction

Over the past decade, numerous ML frameworks have been developed for state-of-health (SOH) and
remaining useful life (RUL) estimation. Classical regression methods—such as elastic net, GPR, and
SVM—performed robustly on engineered features derived from voltage and capacity curves. Neural
networks and ensemble learners (RF, GBRT, CNN-LSTM hybrids) further enhanced predictive capability
by learning nonlinear temporal dependencies. However, these models often require extensive training data
to achieve high generalization accuracy [13]-[15].

Fei et al. (2021) employed a comprehensive ML-based pipeline combining feature extraction, feature
selection, and prediction. Their results demonstrated that while wrapper feature selection significantly
improved performance, all classical models shared a common limitation: their feature representations were
fundamentally restricted to the complexity of their chosen kernels or architectures. Consequently, the
model’s ability to extrapolate early-cycle degradation patterns into long-term lifetime prediction was
constrained [5], [16]-[20].

2.2. Quantum Machine Learning in Materials Informatics

Quantum computing provides a new computational substrate in which data are represented as quantum
states and manipulated via unitary operations. Quantum algorithms such as Quantum Support Vector
Machines (QSVM), Quantum Neural Networks (QNNs), and Variational Quantum Circuits (VQCs) have
demonstrated superior expressivity in small-sample and high-dimensional learning tasks. Their strength lies
in representing data within exponentially large Hilbert spaces using entangled qubits, enabling nonlinear
decision boundaries that classical models cannot efficiently approximate [21]-[24].

Applications of QML have recently expanded into materials informatics, including the prediction of
molecular properties, chemical reactivity, and catalytic activity. However, its use in battery prognostics
remains unexplored. Few studies have attempted to model the temporal degradation of batteries using
quantum kernels or hybrid circuits. This gap motivates the current study, which pioneers the application of
hybrid QML for early prediction of LIB lifetime, bridging physics-informed feature engineering with
quantum-enhanced regression [25]-[30].

2.3. Research Gap and Contribution

While prior ML frameworks have demonstrated substantial predictive accuracy, they fundamentally
rely on classical computation with limited nonlinear mapping capacity. Quantum computing, on the other
hand, allows encoding of battery degradation descriptors (such as voltage evolution, temperature variation,
and impedance increase) into entangled qubit states, providing a richer manifold for regression learning
[31]-[33]. The novelty of this research lies in introducing a Hybrid Quantum—Classical Machine Learning
(HQML) framework that: (1) Utilizes Variational Quantum Circuits (VQCs) to map 42 engineered features
into high-dimensional Hilbert space representations; (2) Integrates the quantum-extracted embeddings with
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a Gradient Boosting Regressor (GBR) for efficient classical optimization; (3) Achieves superior prediction
accuracy and interpretability on small, nonlinear datasets.

The key contributions can be summarized as follows: 1) Framework Innovation: Development of a
Qiskit-based hybrid model that merges quantum feature encoding and classical ensemble learning; 2)
Performance Improvement: Achieving ~19% reduction in RMSE and 4% improvement in R? compared to
the best classical baseline; 3) Interpretability: Demonstrating physical relevance of quantum observables in
relation to thermal and electrochemical degradation features.

3. METHODOLOGY
3.1. Dataset Description

This study utilizes the MIT Battery Degradation Dataset, comprising 124 lithium iron
phosphate/graphite A123 cells (APR18650M1A, 1.1 Ah). Each cell was cycled under controlled
temperature conditions (30 °C) using multistep fast charging and constant current discharging protocols.
Battery lifetime is defined as the cycle count at which the capacity falls below 80% of its nominal value—
lifetimes in this dataset range between 150 and 2300 cycles. Raw signals include voltage, current, capacity,
temperature, and internal resistance. Following Fei et al. (2021) [5], degradation data from the first 100
cycles were analyzed to extract physically meaningful descriptors of early aging.

3.2. Feature Engineering and Selection
A total of 42 engineered features were reproduced from Fei er al.’s manual feature extraction

procedure, categorized into five groups (Table 1):

Table 1. Group of features

Feature Group Description No. of Features
Charge-related CC/CV durations and time differentials 4
Discharge-related Incremental capacity and time-voltage statistics 16
Capacity-related Linear, square-root, and CE model parameters 9
Temperature-related Peak, mean, and integral thermal metrics 11

Internal resistance Resistance mean and delta metrics 2

To mitigate feature redundancy and overfitting, a Wrapper-based Genetic Algorithm (GA) coupled
with Gradient Boosting Regressor (GBR) fitness evaluation was applied. The GA evolved candidate subsets
by minimizing cross-validated RMSE over five folds. The final subgroup comprised 12 features
representing dominant degradation indicators across all physical domains.

3.3. Hybrid Quantum—Classical Architecture
The proposed Hybrid Quantum—Classical Machine Learning (HQML) framework combines quantum
feature embedding with classical ensemble regression (Fig. 1).
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Figure 1. Proposed model framework
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1. Quantum Encoder [34]-[36]:
o Input: 12 selected features (after normalization).
o Encoding: Hybrid amplitude + angle encoding scheme.
»  Amplitude encoding efficiently embeds continuous features into quantum state
amplitudes.
*  Angle encoding maps each feature to the rotation of a qubit via R,,(6;) gates.
o Architecture: 4-6 qubits, three entanglement layers (CNOT pairs), variational rotations
Ry, Ry, R,
o Output: Expectation values of Pauli observables (Z;), serving as quantum features.
2. Classical Learner [37]-[38]:
o Model: Gradient Boosting Regressor (GBR).
o Input: Quantum-encoded features from VQC measurements.
o Optimization: Bayesian hyperparameter tuning (learning rate, number of trees).
o Objective: Minimize RMSE between predicted and observed battery lifetimes.
3. Training Loop [39]-[40]:
o Quantum circuit parameters 6 are optimized using COBYLA (Constrained Optimization
BY Linear Approximation).
o Classical GBR weights are refined via gradient boosting updates in each iteration.
o The hybrid process repeats until convergence of the total loss function:

f%Z - fasm(E[Z(0)))?

4. RESULTS AND DISCUSSION
4.1. Experimental Setup

The dataset was split into 70% training and 30% testing sets via stratified random sampling, ensuring
proportional representation of short-lived and long-lived cells. Each model evaluation was repeated 20
times with different random seeds. Models compared classical baselines (Elastic Net, GPR, SVM, RF,
GBRT, NN) with the proposed models (Hybrid VQC-GBR (HQML) and pure QSVM (for an ablation
study)).

4.2 Quantitative Performance

Table 2. Model performances

Model RMSE (cycles) MAPE (%) e i‘jé’:%‘;ﬁfﬁ;
Elastic Net 121 9.1 0.89 -
GPR 119 8.9 0.89 -
SVM + Wrapper 115 8.0 0.90 Baseline
QSVM (RBF kernel) 104 7.4 0.92 +9.6%
Hybrid VQC-GBR (proposed) 93 6.9 0.94 +19.1%

The results indicate that the proposed Hybrid Quantum—Classical Machine Learning (HQML) model
delivers the most accurate and reliable performance among all tested approaches. It achieves the lowest
root mean square error (RMSE) of 93 cycles and the highest coefficient of determination (R?) of 0.94,
demonstrating its strong predictive capability. While the Quantum Support Vector Machine (QSVM) alone
shows a moderate improvement over classical baselines, it still suffers from limited interpretability. In
contrast, the hybrid configuration successfully combines the enhanced feature expressivity of the quantum
layer with the robustness and stability of classical gradient boosting. This synergy results in superior
generalization and consistency across all 20 randomized training—testing splits.
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Figure 2. HQML predictions
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Figure 3. ROC curve

Figure 2 illustrates the relationship between the predicted and true battery lifetimes, where the HQML
model’s predictions align closely with the 45° reference line. This strong correspondence demonstrates that
the hybrid approach produces significantly lower variance compared to classical regressors, reflecting
improved predictive stability and accuracy. Figure 3 presents the average RMSE obtained across all
evaluated models, showing that the hybrid quantum machine learning (QML) framework consistently
outperforms traditional algorithms by a margin exceeding 15 cycles. Furthermore, the analysis of quantum
feature distributions—derived from the expectation values of the variational quantum circuit (VQC)—
reveals Gaussian-like variance patterns centered near entanglement regions. This behavior indicates that
qubit correlations effectively capture physically meaningful degradation characteristics, thereby linking
quantum-state representations to underlying electrochemical processes.

One of the principal advantages of the hybrid quantum approach lies in its interpretability at the
quantum level: (1) Observables (Z;) and mutual information between qubits were correlated with thermal
and impedance features, revealing that entanglement depth increases with temperature gradients, consistent
with known degradation physics; (2) The VQC measurement outcomes display feature importance akin to
SHAP values, but derived from quantum observables—providing a physics-aligned interpretability
mechanism absent in classical ML.
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4.3 Computational Efficiency

Despite the high expressivity of the quantum layer, the overall computational demand of the HQML
model remains practical and efficient. On the Qiskit Aer simulator using four qubits and three variational
layers, the average runtime per optimization epoch was approximately 12.4 seconds. For a complete
training process consisting of 20 repeated runs, the total computational time was 4.8 minutes, comparable
to that required by traditional ensemble models such as Random Forest (RF) and Gradient Boosting
Regressor (GBRT) when applied to the same dataset. Furthermore, the scaling advantage of the hybrid
model becomes increasingly apparent as the feature dimensionality grows. While classical kernel-based
models tend to saturate and overfit in high dimensions, quantum encodings continue to enhance feature
expressivity without sacrificing generalization performance.

5. CONCLUSION

This study introduced a Hybrid Quantum—Classical Machine Learning (HQML) framework for the
early prediction of lithium-ion battery lifetime. Building upon the classical foundation established by Fei
et al. (2021), the proposed model integrates a Variational Quantum Circuit (VQC) as a quantum feature
encoder with a Gradient Boosting Regressor (GBR) as the classical prediction layer. This hybrid
configuration leverages the unique representational power of quantum feature maps to capture complex
nonlinear degradation dynamics that conventional ML kernels fail to express effectively.

By embedding electrochemical descriptors into high-dimensional Hilbert space and combining
quantum outputs with classical boosting, the HQML model achieved a 19% improvement in RMSE and a
4% improvement in R? relative to the best classical baseline (SVM + Wrapper). Beyond performance gains,
the framework also introduces a physically interpretable layer via quantum observables, where qubit
entanglement patterns align with temperature- and resistance-related degradation mechanisms.

These results demonstrate that quantum machine learning offers not only a computationally feasible
but also a scientifically interpretable approach for small-sample, high-dimensional energy data. The
outcomes establish HQML as a viable candidate for next-generation battery prognostics, intelligent battery
management, and digital twin systems for energy storage reliability.
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