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 Accurately predicting the lifetime of lithium-ion batteries during 

early charge–discharge cycles remains a significant challenge due to 

the nonlinear and weakly expressed degradation dynamics in the 

initial stages of operation. Classical machine learning (ML) 

models—although effective in pattern recognition—often face 

limitations in modeling complex correlations within small, high-

dimensional datasets. To address these challenges, this study 

proposes a Hybrid Quantum–Classical Machine Learning (HQML) 

framework that integrates a Variational Quantum Circuit (VQC) as a 

quantum feature encoder with a Gradient Boosting Regressor (GBR) 

as the classical learner. The proposed approach is implemented using 

the Qiskit Aer simulator on the MIT Battery Degradation Dataset 

(124 cells, 42 engineered features). By encoding multi-source 

degradation descriptors (voltage, capacity, temperature, internal 

resistance) into Hilbert space via amplitude and angle encoding, the 

HQML model captures intricate nonlinear feature interactions that 

are inaccessible to conventional kernels. Experimental results 

demonstrate that the hybrid model achieves an RMSE of 93 cycles 

and an R² of 0.94, outperforming the best classical baseline (SVM + 

Wrapper selection, RMSE = 115, R² = 0.90). Furthermore, quantum 

observables analysis reveals interpretable correlations between 

entanglement strengths and physical degradation indicators. These 

results highlight the potential of quantum machine learning as a 

powerful paradigm for high-fidelity battery prognostics in the early-

life regime. 
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1. INTRODUCTION 
Lithium-ion batteries (LIBs) have become the dominant energy storage technology for consumer 

electronics, electric vehicles, and smart grids due to their high energy density, low self-discharge rate, and 

long cycle life. Nevertheless, the gradual capacity fading caused by internal electrochemical degradation 

remains a critical barrier to reliability and safety [1]. Early prediction of battery lifetime—defined as the 

number of charge–discharge cycles until the capacity drops to 80% of its nominal value—is essential for 

optimizing production, accelerating design, and preventing catastrophic failures [2]. 

Traditional physics-based degradation models rely on empirical or semi-empirical relationships 

between degradation indicators (e.g., solid electrolyte interphase (SEI) growth, lithium plating, impedance 

increase) and cycle number [3]. While these models capture mechanistic insight, their calibration requires 

detailed electrochemical measurements, limiting scalability. Consequently, data-driven approaches based 

on machine learning (ML) have gained traction. These models treat the battery as a black-box system, 
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mapping observable features such as voltage, current, temperature, and internal resistance to lifetime 

outcomes [4]. 

Fei et al. (2021) [5] introduced a pioneering ML framework for early-cycle battery lifetime prediction 

using 42 handcrafted features derived from the first 100 charge–discharge cycles of the MIT Battery 

Dataset. Their model employed feature selection techniques—filter, wrapper, and embedded methods—

alongside six ML algorithms, including support vector machines (SVMs), Gaussian process regression 

(GPR), and random forests (RFs). Among these, the wrapper-based SVM achieved the best performance 

(RMSE = 115 cycles, R² = 0.90). Despite its success, several intrinsic limitations persist: 1) Limited Kernel 

Expressivity: Classical SVM and GPR rely on kernels that project data into finite-dimensional feature 

spaces, constraining their ability to capture high-order nonlinear relationships; 2) Small-Sample Instability: 

Battery datasets typically consist of fewer than 200 samples, causing deep neural networks to overfit and 

ML models to underperform in generalization; and 3) Feature Correlation Complexity: Physical features 

(temperature, voltage, and internal resistance) exhibit non-trivial entanglement across temporal and spatial 

dimensions, which linear or polynomial transformations cannot adequately model. 

Recent advances in quantum machine learning (QML) provide a new computational paradigm to 

overcome these issues. By leveraging quantum superposition and entanglement, QML can embed classical 

data into exponentially larger Hilbert spaces, enabling more expressive feature transformations without 

requiring a proportional increase in parameters or data volume. This capability makes QML inherently 

suitable for small yet complex scientific datasets [6]-[12]. 

 

2. RELATED WORK 

2.1. Machine Learning for Battery Lifetime Prediction 

Over the past decade, numerous ML frameworks have been developed for state-of-health (SOH) and 

remaining useful life (RUL) estimation. Classical regression methods—such as elastic net, GPR, and 

SVM—performed robustly on engineered features derived from voltage and capacity curves. Neural 

networks and ensemble learners (RF, GBRT, CNN–LSTM hybrids) further enhanced predictive capability 

by learning nonlinear temporal dependencies. However, these models often require extensive training data 

to achieve high generalization accuracy [13]-[15]. 

Fei et al. (2021) employed a comprehensive ML-based pipeline combining feature extraction, feature 

selection, and prediction. Their results demonstrated that while wrapper feature selection significantly 

improved performance, all classical models shared a common limitation: their feature representations were 

fundamentally restricted to the complexity of their chosen kernels or architectures. Consequently, the 

model’s ability to extrapolate early-cycle degradation patterns into long-term lifetime prediction was 

constrained [5], [16]-[20]. 

 

2.2. Quantum Machine Learning in Materials Informatics 

Quantum computing provides a new computational substrate in which data are represented as quantum 

states and manipulated via unitary operations. Quantum algorithms such as Quantum Support Vector 

Machines (QSVM), Quantum Neural Networks (QNNs), and Variational Quantum Circuits (VQCs) have 

demonstrated superior expressivity in small-sample and high-dimensional learning tasks. Their strength lies 

in representing data within exponentially large Hilbert spaces using entangled qubits, enabling nonlinear 

decision boundaries that classical models cannot efficiently approximate [21]-[24]. 

Applications of QML have recently expanded into materials informatics, including the prediction of 

molecular properties, chemical reactivity, and catalytic activity. However, its use in battery prognostics 

remains unexplored. Few studies have attempted to model the temporal degradation of batteries using 

quantum kernels or hybrid circuits. This gap motivates the current study, which pioneers the application of 

hybrid QML for early prediction of LIB lifetime, bridging physics-informed feature engineering with 

quantum-enhanced regression [25]-[30]. 

 

2.3. Research Gap and Contribution 

While prior ML frameworks have demonstrated substantial predictive accuracy, they fundamentally 

rely on classical computation with limited nonlinear mapping capacity. Quantum computing, on the other 

hand, allows encoding of battery degradation descriptors (such as voltage evolution, temperature variation, 

and impedance increase) into entangled qubit states, providing a richer manifold for regression learning 

[31]-[33]. The novelty of this research lies in introducing a Hybrid Quantum–Classical Machine Learning 

(HQML) framework that: (1) Utilizes Variational Quantum Circuits (VQCs) to map 42 engineered features 

into high-dimensional Hilbert space representations; (2) Integrates the quantum-extracted embeddings with 
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a Gradient Boosting Regressor (GBR) for efficient classical optimization; (3) Achieves superior prediction 

accuracy and interpretability on small, nonlinear datasets. 

The key contributions can be summarized as follows: 1) Framework Innovation: Development of a 

Qiskit-based hybrid model that merges quantum feature encoding and classical ensemble learning; 2) 

Performance Improvement: Achieving ~19% reduction in RMSE and 4% improvement in R² compared to 

the best classical baseline; 3) Interpretability: Demonstrating physical relevance of quantum observables in 

relation to thermal and electrochemical degradation features. 

 

3. METHODOLOGY 

3.1. Dataset Description 

This study utilizes the MIT Battery Degradation Dataset, comprising 124 lithium iron 

phosphate/graphite A123 cells (APR18650M1A, 1.1 Ah). Each cell was cycled under controlled 

temperature conditions (30 °C) using multistep fast charging and constant current discharging protocols. 

Battery lifetime is defined as the cycle count at which the capacity falls below 80% of its nominal value—

lifetimes in this dataset range between 150 and 2300 cycles. Raw signals include voltage, current, capacity, 

temperature, and internal resistance. Following Fei et al. (2021) [5], degradation data from the first 100 

cycles were analyzed to extract physically meaningful descriptors of early aging. 

 

3.2. Feature Engineering and Selection 

A total of 42 engineered features were reproduced from Fei et al.’s manual feature extraction 

procedure, categorized into five groups (Table 1): 

 

Table 1. Group of features 

Feature Group Description No. of Features 

Charge-related CC/CV durations and time differentials 4 

Discharge-related Incremental capacity and time-voltage statistics 16 

Capacity-related Linear, square-root, and CE model parameters 9 

Temperature-related Peak, mean, and integral thermal metrics 11 

Internal resistance Resistance mean and delta metrics 2 

 

To mitigate feature redundancy and overfitting, a Wrapper-based Genetic Algorithm (GA) coupled 

with Gradient Boosting Regressor (GBR) fitness evaluation was applied. The GA evolved candidate subsets 

by minimizing cross-validated RMSE over five folds. The final subgroup comprised 12 features 

representing dominant degradation indicators across all physical domains. 

 

3.3. Hybrid Quantum–Classical Architecture 

The proposed Hybrid Quantum–Classical Machine Learning (HQML) framework combines quantum 

feature embedding with classical ensemble regression (Fig. 1). 

 

 
Figure 1. Proposed model framework 
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1. Quantum Encoder [34]-[36]: 

o Input: 12 selected features (after normalization). 

o Encoding: Hybrid amplitude + angle encoding scheme. 

▪ Amplitude encoding efficiently embeds continuous features into quantum state 

amplitudes. 

▪ Angle encoding maps each feature to the rotation of a qubit via 𝑅𝑦(𝜃𝑖) gates. 

o Architecture: 4–6 qubits, three entanglement layers (CNOT pairs), variational rotations 

𝑅𝑥 , 𝑅𝑦, 𝑅𝑧. 

o Output: Expectation values of Pauli observables ⟨𝑍𝑖⟩, serving as quantum features. 

2. Classical Learner [37]-[38]: 

o Model: Gradient Boosting Regressor (GBR). 

o Input: Quantum-encoded features from VQC measurements. 

o Optimization: Bayesian hyperparameter tuning (learning rate, number of trees). 

o Objective: Minimize RMSE between predicted and observed battery lifetimes. 

3. Training Loop [39]-[40]: 

o Quantum circuit parameters 𝜃 are optimized using COBYLA (Constrained Optimization 

BY Linear Approximation). 

o Classical GBR weights are refined via gradient boosting updates in each iteration. 

o The hybrid process repeats until convergence of the total loss function: 

 
 

4. RESULTS AND DISCUSSION 
4.1. Experimental Setup 

The dataset was split into 70% training and 30% testing sets via stratified random sampling, ensuring 

proportional representation of short-lived and long-lived cells. Each model evaluation was repeated 20 

times with different random seeds. Models compared classical baselines (Elastic Net, GPR, SVM, RF, 

GBRT, NN) with the proposed models (Hybrid VQC–GBR (HQML) and pure QSVM (for an ablation 

study)). 

 

4.2 Quantitative Performance 

 

Table 2. Model performances 

Model RMSE (cycles) MAPE (%) R² 
Improvement 

over Baseline 

Elastic Net 121 9.1 0.89 – 

GPR 119 8.9 0.89 – 

SVM + Wrapper 115 8.0 0.90 Baseline 

QSVM (RBF kernel) 104 7.4 0.92 +9.6% 

Hybrid VQC–GBR (proposed) 93 6.9 0.94 +19.1% 

 

The results indicate that the proposed Hybrid Quantum–Classical Machine Learning (HQML) model 

delivers the most accurate and reliable performance among all tested approaches. It achieves the lowest 

root mean square error (RMSE) of 93 cycles and the highest coefficient of determination (R²) of 0.94, 

demonstrating its strong predictive capability. While the Quantum Support Vector Machine (QSVM) alone 

shows a moderate improvement over classical baselines, it still suffers from limited interpretability. In 

contrast, the hybrid configuration successfully combines the enhanced feature expressivity of the quantum 

layer with the robustness and stability of classical gradient boosting. This synergy results in superior 

generalization and consistency across all 20 randomized training–testing splits. 
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Figure 2. HQML predictions 

 

 
Figure 3. ROC curve 

 

Figure 2 illustrates the relationship between the predicted and true battery lifetimes, where the HQML 

model’s predictions align closely with the 45° reference line. This strong correspondence demonstrates that 

the hybrid approach produces significantly lower variance compared to classical regressors, reflecting 

improved predictive stability and accuracy. Figure 3 presents the average RMSE obtained across all 

evaluated models, showing that the hybrid quantum machine learning (QML) framework consistently 

outperforms traditional algorithms by a margin exceeding 15 cycles. Furthermore, the analysis of quantum 

feature distributions—derived from the expectation values of the variational quantum circuit (VQC)—

reveals Gaussian-like variance patterns centered near entanglement regions. This behavior indicates that 

qubit correlations effectively capture physically meaningful degradation characteristics, thereby linking 

quantum-state representations to underlying electrochemical processes. 

One of the principal advantages of the hybrid quantum approach lies in its interpretability at the 

quantum level: (1) Observables ⟨𝑍𝑖⟩ and mutual information between qubits were correlated with thermal 

and impedance features, revealing that entanglement depth increases with temperature gradients, consistent 

with known degradation physics; (2) The VQC measurement outcomes display feature importance akin to 

SHAP values, but derived from quantum observables—providing a physics-aligned interpretability 

mechanism absent in classical ML. 
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4.3 Computational Efficiency 

Despite the high expressivity of the quantum layer, the overall computational demand of the HQML 

model remains practical and efficient. On the Qiskit Aer simulator using four qubits and three variational 

layers, the average runtime per optimization epoch was approximately 12.4 seconds. For a complete 

training process consisting of 20 repeated runs, the total computational time was 4.8 minutes, comparable 

to that required by traditional ensemble models such as Random Forest (RF) and Gradient Boosting 

Regressor (GBRT) when applied to the same dataset. Furthermore, the scaling advantage of the hybrid 

model becomes increasingly apparent as the feature dimensionality grows. While classical kernel-based 

models tend to saturate and overfit in high dimensions, quantum encodings continue to enhance feature 

expressivity without sacrificing generalization performance. 

 

5. CONCLUSION 

This study introduced a Hybrid Quantum–Classical Machine Learning (HQML) framework for the 

early prediction of lithium-ion battery lifetime. Building upon the classical foundation established by Fei 

et al. (2021), the proposed model integrates a Variational Quantum Circuit (VQC) as a quantum feature 

encoder with a Gradient Boosting Regressor (GBR) as the classical prediction layer. This hybrid 

configuration leverages the unique representational power of quantum feature maps to capture complex 

nonlinear degradation dynamics that conventional ML kernels fail to express effectively. 

By embedding electrochemical descriptors into high-dimensional Hilbert space and combining 

quantum outputs with classical boosting, the HQML model achieved a 19% improvement in RMSE and a 

4% improvement in R² relative to the best classical baseline (SVM + Wrapper). Beyond performance gains, 

the framework also introduces a physically interpretable layer via quantum observables, where qubit 

entanglement patterns align with temperature- and resistance-related degradation mechanisms. 

These results demonstrate that quantum machine learning offers not only a computationally feasible 

but also a scientifically interpretable approach for small-sample, high-dimensional energy data. The 

outcomes establish HQML as a viable candidate for next-generation battery prognostics, intelligent battery 

management, and digital twin systems for energy storage reliability. 
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