Optimasi Klasifikasi Data Stunting Melalui Ensemble Learning pada Label Multiclass dengan Imbalance Data

Authors

DOI:

https://doi.org/10.62411/tc.v23i1.9779

Keywords:

Machine Learning, Bagging, Boosting, Stacking, Imbalance

Abstract

Salah satu permasalahan kesehatan yang sering ditemui di banyak negara termasuk Indonesia adalah stunting. Stunting telah mendapat banyak perhatian di Indonesia, terlihat dari alokasi APBN masing-masing sebesar Rp48,3 triliun dan Rp49,4 triliun pada tahun 2022 dan 2023 untuk bidang ini. Pada tahun 2022, Kementerian Kesehatan merilis temuan dari Survei Status Gizi Indonesia (SSGI) yang menyatakan bahwa angka stunting di Indonesia mencapai 21,6% pada saat Rapat Kerja Nasional BKKBN pada 25 Januari 2023.Hal ini menunjukkan pentingnya untuk mengerti pemahaman mendalam tentang faktor-faktor yang mengidentifikasi anak-anak berisiko tinggi terkena stunting. Banyak penelitian sebelumnya yang membahas faktor resiko stunting, namun masih sedikit penerapannya dalam metode machine learning, dalam data yang kompleks dan tidak seimbang.Penelitian ini mengevaluasi kinerja dari berbagai metode machine learning yang bertujuan dapat memberikan kontribusi penting dalam bidang kesehatan anak dan analisis data. Diantara metode machine learning yang dipilih metode Bagging Decision Tree mendapatkan nilai accuracy yang terbaik sebesar 78,93%, precision 78% dan recall sebesar 77,99%. Dalam penelitian ini menunjukkan bahwa metode ensemble learning mampu bekerja dengan baik dalam atribut multiclass dan data yang tidak seimbang pada dataset pertumbuhan balita.

Author Biography

Eko Prasetyo, Universitas Stikubank

Mahasiswa S2 - Magister Teknologi Informasi, Fakultas Teknologi Informasi dan Industri, Universitas Stikubank Semarang

References

A. Aditianti, I. Raswanti, S. Sudikno, D. Izwardy, and S. E. Irianto, “Prevalensi Dan Faktor Risiko Stunting Pada Balita 24-59 Bulan Di Indonesia: Analisis Data Riset Kesehatan Dasar 2018 [Prevalence and Stunting Risk Factors in Children 24-59 Months in Indonesia: Analysis of Basic Health Research Data 2018],” Penelit. Gizi dan Makanan (The J. Nutr. Food Res., vol. 43, no. 2, pp. 51–64, 2021, doi: 10.22435/pgm.v43i2.3862.

O. Saeful Bachri, R. Mohamad, and H. Bhakti, “Penentuan Status Stunting Pada Anak Dengan Menggunakan Algoritma KNN Stunting Status Determination in Children using KNN ALgorithm,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 3, no. 2, pp. 130–137, 2021.

M. R. Nugroho, R. N. Sasongko, and M. Kristiawan, “Faktor-faktor yang Mempengaruhi Kejadian Stunting pada Anak Usia Dini di Indonesia,” J. Obs. J. Pendidik. Anak Usia Dini, vol. 5, no. 2, pp. 2269–2276, 2021, doi: 10.31004/obsesi.v5i2.1169.

Y. Permanasari et al., “Faktor Determinan Balita Stunting Pada Desa Lokus Dan Non Lokus Di 13 Kabupaten Lokus Stunting Di Indonesia Tahun 2019,” Penelit. Gizi dan Makanan (The J. Nutr. Food Res., vol. 44, no. 2, pp. 79–92, 2021, doi: 10.22435/pgm.v44i2.5665.

A. Sumiah and N. Mirantika, “Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Rekomendasi Penentuan Mahasiswa Penerima Beasiswa pada Universitas Kuningan,” Buffer Inform., vol. 6, no. 1, pp. 1–10, 2020.

J. D. German, A. K. S. Ong, A. A. N. Perwira Redi, and K. P. E. Robas, “Predicting factors affecting the intention to use a 3PL during the COVID-19 pandemic: A machine learning ensemble approach,” Heliyon, vol. 8, no. 11, p. e11382, 2022, doi: 10.1016/j.heliyon.2022.e11382.

M. Bansal, Prince, R. Yadav, and P. K. Ujjwal, “Palmistry using Machine Learning and OpenCV,” Proc. 4th Int. Conf. Inven. Syst. Control. ICISC 2020, no. Icisc, pp. 536–539, 2020, doi: 10.1109/ICISC47916.2020.9171158.

M. Çakir, M. Yilmaz, M. A. Oral, H. Ö. Kazanci, and O. Oral, “Accuracy assessment of RFerns, NB, SVM, and kNN machine learning classifiers in aquaculture,” J. KING SAUD Univ. - Sci., p. 102754, 2023, doi: 10.1016/j.jksus.2023.102754.

T. Srinath and G. H.S., “Explainable machine learning in identifying credit card defaulters,” Glob. Transitions Proc., vol. 3, no. 1, pp. 119–126, 2022, doi: 10.1016/j.gltp.2022.04.025.

Elsevier B.V., “Application of Data Mining Techniques to Predict Breast Cancer,” Procedia Comput. Sci., vol. 163, pp. 11–18, 2019, doi: 10.1016/j.procs.2019.12.080.

H. Ramadhan et al., “Impression Determination of Batik Image Cloth By Multilabel Ensemble Classification Using Color Difference Histogram Feature Extraction,” J. Ilm. KURSOR, vol. 7, no. 4, pp. 173–180, 2014.

S. Bashir, U. Qamar, and F. H. Khan, “Heterogeneous classifiers fusion for dynamic breast cancer diagnosis using weighted vote based ensemble,” Qual. Quant., vol. 49, no. 5, pp. 2061–2076, 2015, doi: 10.1007/s11135-014-0090-z.

Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.

K. Nugroho, E. Tjahjaningsih, L. Liana, and R. Mohamad Herdian Bhakti, “Prediksi Ujaran Kebencian Berbasis Text Pada Sosial Media Menggunakan Metode Neural Network,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 5, no. 1, pp. 60–68, 2023, doi: 10.46772/intech.v5i1.1063.

Y. Pristyanto, “Penerapan Metode Ensemble Untuk Meningkatkan Kinerja Algoritme Klasifikasi Pada Imbalanced Dataset,” J. Teknoinfo, vol. 13, no. 1, p. 11, 2019, doi: 10.33365/jti.v13i1.184.

M. Bansal, A. Goyal, and A. Choudhary, “A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning,” Decis. Anal. J., vol. 3, no. May, p. 100071, 2022, doi: 10.1016/j.dajour.2022.100071.

A. Talukder and B. Ahammed, “Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh,” Nutrition, vol. 78, 2020, doi: 10.1016/j.nut.2020.110861.

J. R. Khan, J. H. Tomal, and E. Raheem, “Model and variable selection using machine learning methods with applications to childhood stunting in Bangladesh,” Informatics Heal. Soc. Care, vol. 46, no. 4, pp. 425–442, 2021, doi: 10.1080/17538157.2021.1904938.

R. Setiawan and A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” J. Media Inform. Budidarma, vol. 6, no. 2, p. 777, 2022, doi: 10.30865/mib.v6i2.3566.

N. Zamri et al., “River quality classification using different distances in k-nearest neighbors algorithm,” Procedia Comput. Sci., vol. 204, no. 2021, pp. 180–186, 2022, doi: 10.1016/j.procs.2022.08.022.

S. D. Jadhav and H. P. Channe, “Comparative Study of K-NN, Naive Bayes and Decision Tree Classification Techniques,” Int. J. Sci. Res., vol. 5, no. 1, pp. 1842–1845, 2016, doi: 10.21275/v5i1.nov153131.

R. I. Arumnisaa and A. W. Wijayanto, “SISTEMASI: Jurnal Sistem Informasi Perbandingan Metode Ensemble Learning: Random Forest, Support Vector Machine, AdaBoost pada Klasifikasi Indeks Pembangunan Manusia (IPM) Comparison of Ensemble Learning Method: Random Forest, Support Vector Machine, AdaB,” Januari, vol. 12, no. 1, pp. 2540–9719, 2023, [Online]. Available: http://sistemasi.ftik.unisi.ac.id

M. Yunus, M. K. Biddinika, and A. Fadlil, “Classification of Stunting in Children Using the C4.5 Algorithm,” J. Online Inform., vol. 8, no. 1, pp. 99–106, 2023, doi: 10.15575/join.v8i1.1062.

S. K. P. Loka and A. Marsal, “Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier untuk Klasifikasi Status Gizi Pada Balita di Kota Solok: Comparison Algorithm of K-Nearest …,” … Indones. J. Mach. Learn. …, vol. 3, no. April, pp. 8–14, 2023, [Online]. Available: https://journal.irpi.or.id/index.php/malcom/article/view/474

P. Purwanto and D. Syarif Sihabudin Sahid, “Using KNN Algorithms for Determining the Recipient of Smart Indonesia Scholarship Program,” J. Komput. Terap., vol. 7, no. Vol. 7 No. 2 (2021), pp. 163–173, 2021, doi: 10.35143/jkt.v7i2.4962.

N. Hidayati and A. Hermawan, “K-Nearest Neighbor (K-NN) algorithm with Euclidean and Manhattan in classification of student graduation,” J. Eng. Appl. Technol., vol. 2, no. 2, pp. 86–91, 2021, doi: 10.21831/jeatech.v2i2.42777.

M. Graczyk, T. Lasota, B. Trawi?ski, and K. Trawi?ski, “Comparison of Bagging, Boosting and Stacking,” Asian Conf. Intell. Inf. Database Syst., pp. 340–350, 2010.

M. H. D. M. Ribeiro and L. dos Santos Coelho, “Ensemble approach based on Bagging, Boosting and Stacking for short-term prediction in agribusiness time series,” Appl. Soft Comput. J., vol. 86, p. 105837, 2020, doi: 10.1016/j.asoc.2019.105837.

R. O. Odegua, “An Empirical Study of Ensemble Techniques (Bagging, Boosting and Stacking) Rising Odegua Nossa Data An Empirical Study of Ensemble Techniques (Bagging, Boosting and Stacking),” Proc. Conf. Deep Learn, no. March 2019, 2019, [Online]. Available: https://www.researchgate.net/publication/338681864

M. Riyyan and H. Firdaus, “Perbandingan Algoritme Naive Bayes Dan KNN Terhadap Data Penerimaan Beasiswa (Studi Kasus Lembaga Beasiswa Baznas Jabar),” J. Inform. dan Rekayasa Elektron., vol. 5, no. 1, pp. 1–10, 2022, doi: 10.36595/jire.v5i1.547.

K. Nugroho, T. D. Wismarini, and H. Murti, “Sales Conversion Optimization Analysis Using the Random Forest Method,” Sinkron, vol. 8, no. 4, pp. 2699–2705, 2023, doi: 10.33395/sinkron.v8i4.12943.

Downloads

Published

2024-02-18