PENERAPAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) UNTUK DETEKSI ANOMALI PADA JARINGAN PEER-TO-PEER (P2P) BOTNET
DOI:
https://doi.org/10.33633/tc.v14i3.947Abstract
Sejak kemunculan peer-to-peer (P2P) Command and Control (C&C) arsitektur, botnet menjadi lebih kuat dibandingkan sebelumnya. Identifikasi anomali dari P2P botnet sangatlah sulit dilakukan padahal proses tersebut merupakan langkah awal yang sangat penting untuk mengidentifikasi kemungkinan adanya potensi ancaman dari malicious bot dalam jaringan. Hal ini menjadi sulit dikarenakan beberapa perilaku dari fitur botnet sangatlah mirip dengan aktifitas jaringan yang sah.Tujuan dari penelitian ini adalah menemukan anomali yang disebabkan oleh peer to peer (P2P) botnets menggunakan metode PCA. Sebagai tambahan, Euclidean distance digunakan untuk mengkalkulasi anomali indeks sebagai parameter pengukuran dari anomali dalam jaringan. Threshold ditetapkan berdasarkan perhitungan pada training set. Setiap pengujian atas sampel test data akan dibandingkan dengan threshold. Apabila hasil kalkulasi test data berada diatas nilai threshold, maka ini menandakan adanya kemungkinan perilaku abnormal pada jaringan. Hasil menunjukan bahwa model kami mampu memberikan akurasi dan efisiensi komputasi dalam mendeteksi perilaku abnormal dari P2P botnet. Kata kunci: botnet, P2P Command and Control, deteksi anomali, PCADownloads
Published
Issue
Section
License
Copyright (c) 2015 Adhitya Nugraha, Nova Rijati
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pernyataan Lisensi
Artikel yang diterbitkan dalam jurnal Techno.Com dilisensikan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional (CC BY-NC 4.0).
Anda diperbolehkan untuk menyalin, mendistribusikan, menampilkan, dan melakukan karya dari artikel ini serta membuat karya turunan selama Anda memberikan kredit yang sesuai kepada penulis asli dan tidak menggunakan karya ini untuk tujuan komersial. Untuk melihat salinan lisensi ini, kunjungi [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
---
Contoh pengkreditan:
- Penulis: [Nama Penulis]
- Judul Artikel: [Judul Artikel]
- Jurnal: Techno.Com, Vol. [Nomor Volume], No. [Nomor Edisi], Tahun [Tahun Penerbitan]
Jika Anda ingin menggunakan karya ini untuk tujuan komersial, Anda harus mendapatkan izin terlebih dahulu dari penulis atau penerbit.
---