Kombinasi Crossover dan Mutasi Terbaik pada Algoritma Genetika dalam Penjadwalan Mata Kuliah
DOI:
https://doi.org/10.33633/tc.v22i4.9298Keywords:
Algoritma Genetika, Crossover, Mutasi, Permasalahan PenjadwalanAbstract
Pada proses penerapanya algoritma Genetika mempunyai operator crossover dan mutasi. Operator crossover mempunyai beberapa jenis dan operator mutasi dilakukan menurut besar probabilitasnya. Penggunaan crossover dan besar probabilitas menjadi salah satu masalah dalam penerapan algoritma Genetika karena dalam pemilihanya ditentukan secara random. Tujuan penelitian ini untuk mencari kombinasi paling baik pada jenis crossover dan besar probabilitas mutasi dalam memecahkan masalah penjadwalan. Kombinasi terbaik adalah kombinasi yang paling banyak menghasilkan hasil optimal. Algoritma Genetika diterapkan dalam permasalahan penjadwalan mata kuliah, kemudian hasil penerapanya dianalisis berdasarkan jenis mutasi dan besar probabilitas yang digunakan. Hasilnya dari semua kombinasi operator yang telah diuji coba untuk menyelesaikan masalah yang sama, ada satu kombinasi operator crossover dan mutasi yang memiliki rata-rata hasil terbaik yaitu kombinasi antara jenis crossover dua-titik dengan besar probabilitas mutasi 3%.References
S. D. Immanuel and U. Kr. Chakraborty, “Genetic Algorithm: An Approach on Optimization,” in 2019 International Conference on Communication and Electronics Systems (ICCES), IEEE, Jul. 2019, pp. 701–708. doi: 10.1109/ICCES45898.2019.9002372.
I. Sumadireja, C. Prianto, and M. H. K. Saputra, Optimasi nilai pendapatan menggunakan algoritma genetika. Bandung: Kreatif Industri Nusantara, 2020.
D. A. Suprayogi and W. F. Mahmudy, “Penerapan Algoritma Genetika Traveling Salesman Problem with Time Window: Studi Kasus Rute Antar Jemput Laundry,” Jurnal Buana Informatika, vol. 6, no. 2, May 2015, doi: 10.24002/jbi.v6i2.407.
T. N. Suharsono and M. R. Saddat, “Penentuan Optimalisasi TSP (Travelling Salesman Problem) Distribusi Barang Menggunakan Algoritma Genetika di Buka Mata Adv,” in SENTER 2017: Seminar Nasional Teknik Elektro 2017, Bandung, Dec. 2017, pp. 326–335.
N. K. Nissaa, Farikhinb, and B. Surarso, “Analisis Pengaruh Operator Genetik pada Algoritma Genetika dan Penerapannya pada Traveling Salesman Problem (TSP),” in PRISMA, Prosiding Seminar Nasional Matematika, Semarang, 2020, pp. 1–7.
E. Supomo, A. Sunyoto, and M. P. Kurniawan, “Optimasi Peletakan Watermark pada Citra Digital Menggunakan Algoritma Genetika,” COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi, vol. 2, no. 2, pp. 11–17, Feb. 2022, doi: 10.33650/coreai.v2i2.3216.
A. Riski, A. Saiful Rizal, and A. Kamsyakawuni, “Pengamanan Citra Dengan Operator Algoritma Genetika,” Fountain of Informatics Journal, vol. 4, no. 1, p. 13, May 2019, doi: 10.21111/fij.v4i1.2906.
I. A. Pardosi, P. Sirait, K. -, S. Goh, and R. Chandra, “Perbaikan Citra Gelap dan Pembesaran Objek Citra Menggunakan Gradient Based Low-Light Image Enhancement dan Rational Ball Cubic B-Spline With Genetic Algorithm,” Jurnal SIFO Mikroskil, vol. 20, no. 2, Oct. 2019, doi: 10.55601/jsm.v20i2.674.
W. Cuiyu, L. Yang, and L. Xinyu, “Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm,” Journal of Systems Engineering and Electronics, vol. 32, no. 2, pp. 261–271, Apr. 2021, doi: 10.23919/JSEE.2021.000023.
W. Xu, H. Y. Sun, A. L. Awaga, Y. Yan, and Y. J. Cui, “Optimization approaches for solving production scheduling problem: A brief overview and a case study for hybrid flow shop using genetic algorithms,” Advances in Production Engineering & Management, vol. 17, no. 1, pp. 45–56, Mar. 2022, doi: 10.14743/apem2022.1.420.
E. Sugiarto, S. Winarno, and A. Fahmi, “PENJADWALAN PERKULIAHAN OTOMATIS BERBASIS FUZZY LOGIC DAN GENETIC ALGORITHM PADA UNIVERSITAS DIAN NUSWANTORO,” Techno.COM, vol. 14, no. 4, Nov. 2015.
M. Ridwan, “Prototype Sistem Pendukung Keputusan Untuk Penetapan Jadwal Kuliah Menggunakan Algoritma Genetika,” Systemic: Information System and Informatics Journal, vol. 2, no. 2, pp. 9–18, Dec. 2016, doi: 10.29080/systemic.v2i2.109.
B. Alhijawi and A. Awajan, “Genetic algorithms: theory, genetic operators, solutions, and applications,” Evol Intell, Feb. 2023, doi: 10.1007/s12065-023-00822-6.
S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimed Tools Appl, vol. 80, no. 5, pp. 8091–8126, Feb. 2021, doi: 10.1007/s11042-020-10139-6.
W. A. Puspaningrum, A. Djunaidy, and R. A. Vinarti, “PENJADWALAN MATA KULIAH MENGGUNAKAN ALGORITMA GENETIKA DI JURUSAN SISTEM INFORMASI ITS,” JURNAL TEKNIK POMITS, vol. 21, no. 1, 2013.
W. Priatna, J. Warta, and D. Sulistiyo, “Implementasi Algoritma Genetika untuk Aplikasi Penjadwalan Sistem Kerja Shift,” Techno.Com, vol. 22, no. 1, pp. 235–246, Feb. 2023, doi: 10.33633/tc.v22i1.7049.
H. Ardiansyah and M. B. S. Junianto, “Penerapan Algoritma Genetika untuk Penjadwalan Mata Pelajaran,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 329, Jan. 2022, doi: 10.30865/mib.v6i1.3418.
L. Asadzadeh, “A local search genetic algorithm for the job shop scheduling problem with intelligent agents,” Comput Ind Eng, vol. 85, pp. 376–383, Jul. 2015, doi: 10.1016/j.cie.2015.04.006.
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/