Peningkatan Deep Neural Network pada Kasus Prediksi Diabetes Menggunakan PSO
DOI:
https://doi.org/10.33633/tc.v22i4.9209Keywords:
Diabetes, DNN, PSO, SVMAbstract
Diabetes adalah ancaman utama bagi kesehatan penduduk dunia yang saat ini merupakan penyebab utama kematian pada penduduk dunia yang berusia kurang dari 60 tahun. Dengan menggunakan Machine Learning diharapkan mampu memprediksi diabetes. Dengan menggunakan dataset Pima Indians Diabetes (PIMA Dataset). Pada penelitian ini dilakukan pengujian dengan menggunakan 2 Algoritma dan 1 Algoritma yang dioptimasi. Pengujian Pertama Menggunakan Support Vector Machine (SVM), Pengujian Kedua menggunakan Deep Neural Network (DNN) dan Pengujian Ketiga menggunakan DNN yang dikombinakan dengan Particle Swarm Optimize (PSO). Pemilihan data yang digunakan sebagai training dilakukan dengan menggunakan Non-Random Sampling. Dalam Penelitian ini pengujian pertama dengan menggunakan SVM dengan melakukan pengujian tanpa menggunakan kernel dan menggunakan kernel Linear, Sigmoid, Polynomial dan Radial Basis Function (RBF). Untuk Pengujian Kedua dilakukan dengan menggunakan DNN tanpa menggunakan Optimaliasi atau DNN original dengan dilakukan penggujian dengan jumlah hidden layer 2 dan jumlah neuron 8 sampai 10 pada setiap hidden layer. Pengujian Ketiga dilakukan dengan menggunakan DNN yang dioptimalisasi dengan menggunakan PSO. Pada Pengujian Ketiga dilakukan penggujian dengan jumlah hidden layer 2 dan jumlah neuron 8 sampai 10 pada setiap hidden layer. Hasil yang diperoleh menunjukkan bahwa DNN yang dioptimasi dengan PSO mampu memberikan akurasi tertinggi dengan jumlah hidden layer 1 sebanyak 9 node dan jumlah hidden layer 2 sebanyak 8 node dengan jumlah iterasi pada PSO sebanyak 166 iterasi.References
S. C. Gupta and N. Goel, “Predictive Modeling and Analytics for Diabetes using Hyperparameter tuned Machine Learning Techniques,” Procedia Comput Sci, vol. 218, pp. 1257–1269, 2023, doi: 10.1016/j.procs.2023.01.104.
“Diabetes.” https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed May 30, 2023).
F. K. Alarfaj, I. Malik, H. U. Khan, N. Almusallam, M. Ramzan, and M. Ahmed, “Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms,” IEEE Access, vol. 10, pp. 39700–39715, 2022, doi: 10.1109/ACCESS.2022.3166891.
M. E. Febrian, F. X. Ferdinan, G. P. Sendani, K. M. Suryanigrum, and R. Yunanda, “Diabetes prediction using supervised machine learning,” Procedia Comput Sci, vol. 216, pp. 21–30, 2023, doi: 10.1016/j.procs.2022.12.107.
N. P. Tigga and S. Garg, “Prediction of Type 2 Diabetes using Machine Learning Classification Methods,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 706–716. doi: 10.1016/j.procs.2020.03.336.
A. Azrar, M. Awais, Y. Ali, and K. Zaheer, “Data Mining Models Comparison for Diabetes Prediction,” 2018. [Online]. Available: www.ijacsa.thesai.org
D. Sisodia and D. S. Sisodia, “Prediction of Diabetes using Classification Algorithms,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 1578–1585. doi: 10.1016/j.procs.2018.05.122.
V. Chang, M. A. Ganatra, K. Hall, L. Golightly, and Q. A. Xu, “An assessment of machine learning models and algorithms for early prediction and diagnosis of diabetes using health indicators,” Healthcare Analytics, vol. 2, Nov. 2022, doi: 10.1016/j.health.2022.100118.
G. Swapna, R. Vinayakumar, and K. P. Soman, “Diabetes detection using deep learning algorithms,” ICT Express, vol. 4, no. 4, pp. 243–246, Dec. 2018, doi: 10.1016/j.icte.2018.10.005.
F. Ismail and I. I. Lawanda, “IMPLEMENTASI EDMS DALAM PENATAAN DOKUMEN DI RAIL DOCUMENT SYSTEM PT. KERETA API INDONESIA (PERSERO) DAERAH OPERASI 1 JAKARTA,” BACA: JURNAL DOKUMENTASI DAN INFORMASI, vol. 41, no. 2, p. 143, Dec. 2020, doi: 10.14203/j.baca.v41i2.563.
N. Li, F. He, W. Ma, R. Wang, and X. Zhang, “Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm,” IEEE Access, vol. 8, pp. 68874–68882, 2020, doi: 10.1109/ACCESS.2020.2985381.
M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13. Institute of Electrical and Electronics Engineers Inc., pp. 6308–6325, 2020. doi: 10.1109/JSTARS.2020.3026724.
H. Zhao, Y. Gao, H. Liu, and L. Li, “Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine,” Journal of Modern Power Systems and Clean Energy, vol. 7, no. 2, pp. 350–356, Mar. 2019, doi: 10.1007/s40565-018-0402-8.
R. Thanki, “A deep neural network and machine learning approach for retinal fundus image classification,” Healthcare Analytics, vol. 3, Nov. 2023, doi: 10.1016/j.health.2023.100140.
H. Cao, F. Wang, M. Deng, X. Wang, and Y. Chu, “Software multiple-fault localization using particle swarm optimization via genetic operation,” Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 4, pp. 21–35, Apr. 2023, doi: 10.1016/j.jksuci.2023.02.023.
L.-H. Ye, S.-J. Chen, Y.-F. Shi, D.-H. Peng, and A.-P. Shi, “Remaining useful life prediction of lithium-ion battery based on chaotic particle swarm optimization and particle filter,” Int J Electrochem Sci, vol. 18, no. 5, p. 100122, May 2023, doi: 10.1016/j.ijoes.2023.100122.
R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” in Proceedings of the 2000 Congress on Evolutionary Computation, CEC 2000, IEEE Computer Society, 2000, pp. 84–88. doi: 10.1109/CEC.2000.870279.
I. Kanjanasurat, K. Tenghongsakul, B. Purahong, and A. Lasakul, “CNN–RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images,” Sensors, vol. 23, no. 3, Feb. 2023, doi: 10.3390/s23031356.
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/