Perbandingan Cacat Ubin Keramik dengan Metode K-Nearest Neighbor dan Support Vector Machine
DOI:
https://doi.org/10.33633/tc.v22i4.8897Keywords:
KNN, SVM, Ubin KeramikAbstract
Penentuan kualitas ubin keramik sudah dilakukan secara otomatis dalam beberapa tahun terakhir. Kendala saat penentuan ubin keramik bercacat dapat berpengaruh terhadap penurunan kualitas produk akhir. Isu yang menjadi fokus dalam penelitian yaitu perbandingan metode antara KNN dengan SVM untuk mendeteksi cacat pada ubin keramik untuk mencapai hasil yang lebih akurat. Untuk mengatasi isu ini, proses yang dilakukan meliputi pengumpulan data gambar dari ubin keramik, yang kemudian diikuti oleh tahap preprocessing dan ekstraksi fitur berdasarkan tekstur. Data gambar tersebut kemudian diklasifikasikan dengan metode KNN dan SVM. Temuan dari penelitian ini menunjukkan bahwa pengklasifikasian dengan metode KNN pada k = 3 mampu memberikan hasil yang lebih unggul, yaitu mencapai akurasi 98.947%, sedangkan pengklasifikasian dengan metode SVM hanya mencapai akurasi 85.263%.References
D. Nazelliana dan P. Widodo, “Deteksi Cacat Ubin Keramik Dengan Metode Jaringa Saraf Tiruan dan Algoritma Backpropagtion,” Fakt. Exacta, vol. 7, no. 2, pp. 154–164, 2014.
K. Ragab dan N. Alsharay, “Developing Parallel Cracks and Spots Ceramic Defect Detection and Classification Algorithm using CUDA,” in 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS), 2017, pp. 255–261.
R. Gonydjaja, Bertalya dan T. M. Kusuma, “Rectangularity Defect Detection for Ceramic Tile Using Morphological Techniques,” ARPN J. Eng. Appl. Sci. 2014, vol. 9, no. 11, pp. 2052–2056, 2014.
K. Ragab dan N. Alsharay, “An Efficient Defect Classification Algorithm for Ceramic Tiles,” in ACIIDS 2017 : Advanced Topics in Intelligent Information and Database Systems, 2017, vol. 710, pp. 235–247.
S. H. Hanzaei dan A. Afshar, “Automatic Detection and Classification of the Ceramic Tiles’ Surface Defects,” Pattern Recognit., vol. 66, pp. 174–189, 2016.
Y. Samarawickrama dan C. Wickramasinghe, “Matlab based Automated Surface Defect Detection System for Ceremic Tiles using Image Processing,” in 2017 6th National Conference on Technology and Management (NCTM), 2017, pp. 34–39.
R. Alamsyah, A.D. Wiranata dan Rafie, “Deteksi Cacat Ubin Keramik Dengan Metode K-Nearest Neighbor,” Techno.COM, vol. 18, no. 3, pp. 245-250, 2019.
A. Johar, D. Yanosma dan K. Anggriani, “Implementasi Metode K-Nearest Neighbor (KNN) dan Simple Additive Weighting (SAW) dalam Pengambilan Keputusan Seleksi Penerimaan Aggota Paskibraka”, Jurnal Pseudocode, vol. 3, no. 2, 2016.
R. Anggraini, B. Hidayat, dan S. Darana, “Klasifikasi Jenis Kualitas Keju Dengan Menggunakan Metode Gray Level Co-occurrence Matrix (GLCM) dan Support Vector Machine (SVM) Pada Citra Digital,” in e-Proceeding of Engineering, 2017, vol. 4, no. 2, pp. 2035–2042.
R. M. Haralick, K. Shanmugam, dan I. Dinstein, “Textural Features for Image Classification,” IEEE, vol. SMC-3, no. 6, pp. 610–621, 1973.
S. Iriyanto dan T. Zaini, Pengolahan citra digital. Bandar Lampung: Anugrah Utama Raharja, 2016.
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/