Fuzzy Time Series Untuk Prediksi Harga Gabah Kering Panen
DOI:
https://doi.org/10.33633/tc.v22i2.7956Keywords:
Fuzzy Time Series, Petani, Prediksi, Gabah KeringAbstract
Meningkatnya jumlah penduduk membuat kebutuhan akan makanan pokok akan selalu meningkat, terutama beras. Namun di sisi lain, dengan adanya jumlah lahan pertanian semakin menyempit akibatnya beralih fungsi lahan pertanian sebagai lahan non pertanian. Hal ini mengakibatkan produksi padi saat ini tidak mampu mengimbangi kebutuhan pangan di Indonesia. Permasalahan yang sering dihadapi petani adalah lemahnya posisi tawar karena kurangnya akses pasar, informasi pasar, dan permodalan. Hal ini membuat petani tidak berdaya untuk menegosiasikan harga hasil panennya, sehingga petani menjual hasil panennya secara borongan kepada orang yang bermodal lebih, dimana dalam penetapan harga menjadi tidak menguntungkan bagi petani. Tujuan dari penelitian ini adalah membuat suatu sistem yang dapat memberikan informasi perubahan harga gabah kering pada panen bulan berikutnya. Informasi ini akan dijadikan acuan untuk menentukan harga jual gabah kering, sehingga kerugian dapat dikurangi. Hasil perhitungan peramalan menggunakan metode Fuzzy Times Series pada bulan Juni dengan harga gabah Rp. 4544,39 per Kilogram dengan nilai MAPE 2,68% atau akurasi tinggi.References
Badan Pusat Statistik, Luas Panen dan Produksi Padi di Indonesia 2019. 2020.
BPS, “Luas Panen dan Produksi Padi di Indonesia 2021 (Angka Sementara),” Ber. Resmi Stat., vol. 2021, no. 77, pp. 1–14, 2021.
I. D. Nugrahani, Y. Susanti, and N. Qona’ah, “Modeling of Rice Production in Indonesia Using Robust Regression with The Method of Moments (MM) Estimation,” vol. 2021, pp. 79–87, 2021, doi: 10.11594/nstp.2021.1111.
Z. Arifin, N. Hanani, D. Kustiono, Syafrial, and R. Asmara, “Forecasting the Basic Conditions of Indonesia’S Rice Economy 2019-2045,” Agric. Soc. Econ. J., vol. 21, no. 02, pp. 111–120, 2021, doi: 10.21776/ub.agrise.2021.021.2.4.
Y. Holle, “Penguatan Kelembagaan Kelompok Tani Untuk Meningkatkan Posisi Tawar Petani,” J. Sosio Agri Papua, vol. 11, no. 1, pp. 35–40, 2022.
M. F. F. Mardianto, E. Tjahjono, M. Rifada, A. Herawanto, A. L. Putra, and K. A. Utama, “The Prediction of Rice Production in Indonesia Provinces for Developing Sustainable Agriculture,” in Journal The First International Conference of Food and Agriculture, 2018, vol., no., pp. 325–333.
Rasna, I. W. Sudarsana, and D. Lusiyanti, “Forecasting Of Crude Palm Oil By Using Fuzzy Time Series Method (Study Case : PT. Buana Mudantara Plantation),” Param. J. Stat., vol. 1, no. 1, pp. 31–40, 2021, doi: 10.22487/27765660.2021.v1.i1.15442.
L. Patria, “Fuzzy Time Series Application in Predicting the Number of Confirmation Cases of Covid-19 Patients in Indonesia,” Int. J. Quant. Res. …, vol. 2, no. 4, pp. 193–200, 2021.
Arnita, N. Afnisah, and F. Marpaung, “A Comparison of the Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan,” J. Phys. Conf. Ser., vol. 1462, no. 1, 2020, doi: 10.1088/1742-6596/1462/1/012044.
A. Hadjira, H. Salhi, and F. El Hafa, “A Comparative Study between ARIMA Model, Holt-Winters – No Seasonal and Fuzzy Time Series for New Cases of COVID-19 in Algeria,” Am. J. Public Heal. Res., vol. 9, no. 6, pp. 248–256, 2021, doi: 10.12691/ajphr-9-6-4.
A Sumarudin, Adi Suheryadi, Bahrainsyah Oksareinaldi, and Lia Nurfadilah, “Aplikasi Monitoring dan Prediksi Harga Komoditas Pasar Daerah Indramayu Berbasis Fuzzy Time Series,” JITSI J. Ilm. Teknol. Sist. Inf., vol. 1, no. 1, pp. 15–24, 2020, doi: 10.30630/jitsi.1.1.4.
S. Solikhin and U. Yudatama, “Fuzzy Time Series dan Algoritme Average Based Length untuk Prediksi Pekerja Migran Indonesia,” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, p. 369, 2019, doi: 10.25126/jtiik.2019641177.
W. Widiyani, Y. Setyawan, and M. T. Jatipaningrum, “Perbandingan Metode Fuzzy Time Series-Chen Dan Weighted Fuzzy Integrated Time Series Untuk Memprediksi Data Indeks Harga Saham Gabungan,” J. Stat. Ind. dan Komputasi, vol. 7, no. 1, pp. 81–87, 2022.
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/