Bidirectional GRU dengan Attention Mechanism pada Analisis Sentimen PLN Mobile
DOI:
https://doi.org/10.33633/tc.v22i2.7876Keywords:
Attention mechanism, BiGRU, PLN Mobile, Sentiment analysis, Word2vecAbstract
PLN Mobile adalah aplikasi ponsel customer self-service yang terintegrasi dengan Aplikasi Pengaduan dan Keluhan Pelanggan (APKT) dan Aplikasi Pelayanan Pelanggan Terpusat (AP2T). Mulai awal tahun 2021 sampai sekarang PLN menggencarkan sosialisasi PLN Mobile pada masyarakat sehingga jumlah ulasan PLN Mobile pada google playstore meningkat drastis. Untuk mengetahui kepuasan pelanggan tidak bisa hanya dengan melihat dan menganalisis dari kolom ulasan PLN Mobile di google playstore, hal ini dikarenakan data ulasan berbentuk tidak terstruktur. Untuk mengatasi masalah ini dibutuhkan teknik khusus yaitu analisis sentimen. Penelitian ini bertujuan untuk mengusulkan arsitektur analisis sentimen untuk mengatasi ketidakmampuan algoritma deep learning seperti LSTM dan GRU dalam menangkap informasi penting. Arsitektur yang diusulkan yaitu mengkombinasikan Bidirectional GRU (BiGRU) dengan attention mechanism menggunakan word2vec sebagai word embedding. Attention mechanism digunakan untuk menangkap kata yang penting sehingga arsitektur tersebut dapat memahami informasi yang penting. Kemudian, arsitektur yang diusulkan dilakukan perbandingan dengan metode CNN, CNN-GRU, CNN-LSTM, CNN-BiGRU, CNN-BiLSTM dengan menggunakan data ulasan PLN Mobile. Hasil eksperimen menunjukkan bahwa arsitektur analisis sentimen yang diusulkan memiliki akurasi dan f1-score yang lebih tinggi.References
B. Liu, Sentiment Analysis and Opinion Mining. Cham: Springer International Publishing, 2012.
B. N. Rodrigues Chagas, J. A. Nogueira Viana, O. Reinhold, F. Lobato, A. F. L. Jacob, and R. Alt, “Current Applications of Machine Learning Techniques in CRM: A Literature Review and Practical Implications,” in 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Dec. 2018, pp. 452–458, doi: 10.1109/WI.2018.00-53.
M. Rhanoui, M. Mikram, S. Yousfi, and S. Barzali, “A CNN-BiLSTM Model for Document-Level Sentiment Analysis,” Mach. Learn. Knowl. Extr., vol. 1, no. 3, pp. 832–847, Jul. 2019, doi: 10.3390/make1030048.
R. Ni and H. Cao, “Sentiment Analysis based on GloVe and LSTM-GRU,” Chinese Control Conf. CCC, vol. 2020-July, pp. 7492–7497, 2020, doi: 10.23919/CCC50068.2020.9188578.
G. Xu, Y. Meng, X. Qiu, Z. Yu, and X. Wu, “Sentiment analysis of comment texts based on BiLSTM,” IEEE Access, vol. 7, no. c, pp. 51522–51532, 2019, doi: 10.1109/ACCESS.2019.2909919.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” 1st Int. Conf. Learn. Represent. ICLR 2013 - Work. Track Proc., pp. 1–12, Jan. 2013, [Online]. Available: http://arxiv.org/abs/1301.3781.
A. Bhuvaneswari, J. T. Jones Thomas, and P. Kesavan, “Embedded Bi-directional GRU and LSTMLearning Models to Predict Disasterson Twitter Data,” Procedia Comput. Sci., vol. 165, pp. 511–516, 2019, doi: 10.1016/j.procs.2020.01.020.
L. Zeng, W. Ren, and L. Shan, “Attention-based bidirectional gated recurrent unit neural networks for well logs prediction and lithology identification,” Neurocomputing, vol. 414, pp. 153–171, 2020, doi: 10.1016/j.neucom.2020.07.026.
H. M. Lynn, S. B. Pan, and P. Kim, “A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks,” IEEE Access, vol. 7, pp. 145395–145405, 2019, doi: 10.1109/ACCESS.2019.2939947.
D. Bahdanau, K. Cho, Y. Bengio, P. By, and R. Aharoni, “Machine Translation is Everywhere,” 2014.
W. Li, F. Qi, M. Tang, and Z. Yu, “Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification,” Neurocomputing, vol. 387, pp. 63–77, 2020, doi: 10.1016/j.neucom.2020.01.006.
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/