Performance Tuning Oracle 11g Database Melalui Inisial Paramater, Structure Database dan SQL Tuning. Studi Pada ERP SISFORBUN Dana Pensiun Perkebunan (DAPENBUN)
DOI:
https://doi.org/10.33633/tc.v22i2.7831Keywords:
Database, Initial Parameter, Structure Database, Oracle 11g, SQL Tuning, Pension FundAbstract
Dana Pensiun Perkebunan (DAPENBUN) sebagai pengelola manfaat pensiun bagi karyawan PTPN seluruh Indonesia beserta lembaga afiliasi dengan jumlah peserta per 31 Desember 2021 sebanyak 284.934 orang. Aplikasi SISFORBUN ini digunakan untuk memproses manfaat pensiun bagi seluruh peserta. Aplikasi berbasis web ini menggunakan database Oracle 11g dan sudah digunakan sejak tahun 2013, dengan seiring berjalanya waktu perkembangan data semakin banyak dengan jumlah record terbesar dalam satu table sebesar 26.696.667 record data, sehingga performa proses data semakin menurun. Atas dasar permasalahan tersebut perlu dilakukan penelitian untuk meningkat performa dari Aplikasi. Penelitian ini menggunakan metode SQL Tuning, Strukturing Object dan Initial Parameter Database. Setelah dilakukan pengujian dengan melakukan proses pembayaran Manfaat Pensiun pada laporan manajemen nomor 18 (LM18), penulis dapat menyimpulkan bahwa setelah dilakukan optimasi, waktu yang diperlukan untuk proses pembayaran Manfaat Pensiun (LM18) menjadi lebih cepat dibandingkan sebelum dilakukan optimasi.References
A. Bachhav, V. Kharat, and M. Shelar, “Query Optimization for Databases in Cloud Environment: A Survey,” International Journal of Database Theory and Application, vol. 10, no. 6, pp. 1–12, Jun. 2017, doi: 10.14257/ijdta.2017.10.6.01.
R. Elmasri and S. B. Navathe, “Database Systems SEVENTH EDITION,” 2016.
A. Abbas and K. Ahmad, “Query Performance in Database Operations.”
www.dapenbun.co.id, “AR 2021,” pp. 66–74, 2021, Accessed: Nov. 03, 2022. [Online]. Available: https://dapenbun.co.id/laporan-tahunan
F. Almeida, P. Silva, and F. Araújo, “Performance analysis and optimization techniques for Oracle Relational Databases,” Cybernetics and Information Technologies, vol. 19, no. 2, pp. 117–132, Jun. 2019, doi: 10.2478/cait-2019-0019.
D. Colley and C. Stanier, “Identifying New Directions in Database Performance Tuning,” in Procedia Computer Science, 2017, vol. 121, pp. 260–265. doi: 10.1016/j.procs.2017.11.036.
Y. Virmansyah, R. Yulyanto Suladi, A. Bambang Lesmana, F. Teknologi Informasi, and U. Budi Luhur, “Optimasi Database dengan Metode Index dan Partisi Tabel Database Postgresql pada Aplikasi E-Commerce. Studi pada Aplikasi Tokopintar.”
O. M. I. Tavares, S. M. Rangkoly, S. B. D. Bawan, K. B. Ahmad, E. Utami, and M. S. Mustafa, “ANALYSIS OF QUERY RESTRUCTURIZATION MODELS IN OPTIMIZING DATA EXECUTION RESPONSE TIME ON MYSQL PHP 7.2.27 RELATIONAL DATABASES,” Jurnal Komputer dan Informatika, vol. 9, no. 1, pp. 1–10, Feb. 2021, doi: 10.35508/jicon.v9i1.3598.
S. Indah Nurhafida et al., “Optimasi Query Database Web Scraping Pada Jurnal SINTA,” 2022. [Online]. Available: http://jurnal.mdp.ac.id
J. M. Medina, C. D. Barranco, and O. Pons, “Evaluation of Indexing Strategies for Possibilistic Queries Based on Indexing Techniques Available in Traditional RDBMS,” International Journal of Intelligent Systems, vol. 31, no. 12, pp. 1135–1165, Dec. 2016, doi: 10.1002/int.21820.
G. Guzun and G. Canahuate, “Hybrid query optimization for hard-to-compress bit-vectors,” VLDB Journal, vol. 25, no. 3, pp. 339–354, Jun. 2016, doi: 10.1007/s00778-015-0419-9.
G. Wood, U. Shaft, and J. Beresniewicz, “Performance Fundamentals for Oracle Database 10g and 11g,” 2008.
Q. Li, H. Xu, and G. Yan, “Research on performance optimization and implementation of oracle database,” in 3rd International Symposium on Intelligent Information Technology Application, IITA 2009, 2009, vol. 3, pp. 520–523. doi: 10.1109/IITA.2009.7.
S. C. Yao, “Optimization design scheme of oracle database,” in Applied Mechanics and Materials, 2014, vol. 608–609, pp. 589–592. doi: 10.4028/www.scientific.net/AMM.608-609.589.
L. Yingcheng and L. Ling, “RESEARCH ON SPATIAL DATABASE DESIGN AND TUNING BASED ON ORACLE AND ARCSDE.”
P. L. Bajaj, “A Survey on Query Performance Optimization by Index Recommendation,” 2015.
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/