Analisis Penggunaan Pra-proses pada Metode Transfer Learning untuk Mendeteksi Penyakit Daun Singkong
DOI:
https://doi.org/10.33633/tc.v22i2.7769Keywords:
Transfer learning, Augmentation, Rotation, ResNet, MobileNetAbstract
Singkong menjadi salah satu tanaman penting pada bidang agronomi dan banyak dikonsumsi oleh masyarakat. Namun, terdapat salah satu kendala dalam menjaga kelestarian tanaman singkong yaitu pendeteksian penyakit. Jika penyakit pada tanaman singkong dapat terdeteksi lebih dahulu melalui citra daunnya, maka penyakit tersebut dapat segera diobati. Proses klasifikasi dapat dilakukan untuk mendeteksi penyakit pada tanaman secara otomatis. Pada penelitian ini dilakukan klasifikasi tanaman singkong dengan menggunakan beberapa tahap pra-proses yaitu pra-proses dengan augmentasi, tanpa augmentasi dan pra-proses dengan rotasi, pada beberapa metode transfer learning seperti ResNet50 dan MobileNetV2. Penggunaan beberapa metode tersebut bertujuan untuk mencari metode mana yang memiliki hasil akurasi tertinggi. Penelitian menunjukkan bahwa MobileNetV2 tanpa augmentasi memberikan akurasi tertinggi sebesar 98.64% dalam mendeteksi penyakit tanaman singkong. Hal ini dapat menjadi referensi bagi peneliti selanjutnya dalam menentukan tahap pra-proses terbaik dalam metode transfer learning.References
G. Sambasivam, dan G. D. Opiyo, 2021, A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks, Egypt. Informatics J., vol. 22, no. 1, hal. 27–34.
K. P. Ferentinos, 2018, Deep learning models for plant disease detection and diagnosis, Comput. Electron. Agric., vol. 145, hal. 311–318.
A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, J. Legg, dan D. P. Hughes, 2017, Deep learning for image-based cassava disease detection, Front. Plant Sci., vol. 8, hal. 1–7.
Ü. Atila, M. Uçar, K. Akyol, dan E. Uçar, 2021, Plant leaf disease classification using EfficientNet deep learning model, Ecol. Inform., vol. 61, hal. 101182.
I. Sangbamrung, P. Praneetpholkrang, dan S. Kanjanawattana, 2020, A novel automatic method for cassava disease classification using deep learning, J. Adv. Inf. Technol., vol. 11, no. 4, hal. 241–248.
M. A. Islam, M. Billah, dan S. I. Yousuf, 2019, Automatic Plant Detection Using HOG and LBP Features With SVM, Int. J. Comput., vol. 33, no. 1, hal. 26–38, 2019.
M. Francis, dan C. Deisy, 2019, Disease Detection and Classification in Agricultural Plants Using Convolutional Neural Networks - A Visual Understanding, 2019 6th Int. Conf. Signal Process. Integr. Networks, SPIN 2019, hal. 1063–1068.
J. Chen, D. Zhang, Y. A. Nanehkaran, dan D. Li, 2020, Detection of rice plant diseases based on deep transfer learning, J. Sci. Food Agric., vol. 100, no. 7, hal. 3246–3256.
H. R. Ayu, A. Surtono, dan D. K. Apriyanto, 2021, Deep learning for detection cassava leaf disease, J. Phys. Conf. Ser., vol. 1751, no. 1.
I. Z. Mukti, dan D. Biswas, 2019, Transfer Learning Based Plant Diseases Detection Using ResNet50, 2019 4th Int. Conf. Electr. Inf. Commun. Technol. EICT 2019, hal. 1–6.
V. Kumar, H. Arora, Harsh, dan J. Sisodia, 2020, ResNet-based approach for Detection and Classification of Plant Leaf Diseases, Proc. Int. Conf. Electron. Sustain. Commun. Syst. ICESC 2020, hal. 495–502.
K. P. Panigrahi, H. Das, A. K. Sahoo, dan S. C. Moharana, 2020, Maize Leaf Disease Detection and Classification Using Machine Learning Algorithms BT - Progress in Computing, Analytics and Networking, hal. 659–669.
X. Yin, X. Liu, J. Chen, dan D. M. Kramer, 2014, Multi-leaf alignment from fluorescence plant images.
E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, dan P. De Geus, 2017, Malicious software classification using transfer learning of ResNet-50 deep neural network, Proc. - 16th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2017, hal. 1011–1014.
S. Z. M. Zaki, M. A. Zulkifley, M. Mohd Stofa, N. A. M. Kamari, dan N. A. Mohamed, 2020, Classification of tomato leaf diseases using mobilenet v2, IAES Int. J. Artif. Intell.
X. Liu, Z. Jia, X. Hou, M. Fu, L. Ma, dan Q. Sun, 2019, Real-time Marine Animal Images Classification by Embedded System Based on Mobilenet and Transfer Learning, Ocean. 2019 - Marseille, Ocean. Marseille 2019, no. 61401244.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, dan L. C. Chen, 2018, MobileNetV2: Inverted Residuals and Linear Bottlenecks, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., hal. 4510–4520.
A. Ramcharan et al., 2019, A mobile-based deep learning model for cassava disease diagnosis, Front. Plant Sci., vol. 10, hal. 1–8.
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/