Estimasi Galat Sebagai Kompensasi Hasil Pembacaan Sensor Suhu Non-Sentuh Menggunakan Regresi Linier
DOI:
https://doi.org/10.33633/tc.v22i1.7166Keywords:
kompensasi galat, regresi linear, sensor suhu non-sentuhAbstract
Abstrak Penelitian ini bertujuan untuk membuktikan penerapan metode regresi linear untuk mengestimasi galat sebagai kompensasi untuk menurunkan galat pembacaan sensor suhu non-sentuh. Hal ini terlihat pada masa pandemi COVID – 19 melalui penggunaan thermo gun untuk mengukur suhu seseorang membutuhkan jarak yang sangat dekat. Penelitian dilakukan dengan mengukur objek air yang merupakan unsur terbanyak pada tubuh manusia. Suhu pengukuran telah dikondisikan pada 36°C, 37°C, dan 38°C dengan masing-masing variasi jarak 2cm, 4cm, dan 6cm. Hasil dari validasi menunjukkan model dapat menurunkan galat pada suhu 36°C pada masing-masing jarak sebesar 4,43%, 8,00%, dan 8,70% pada jarak 2cm, 4cm, dan 6cm. Validasi berdasarkan MAE sebelum dimodelkan adalah 2,91 dan nilai MAE setelah dimodelkan adalah 0,37. Penurunan nilai galat pada suhu 37°C untuk masing-masing jarak 2cm, 4cm, dan 6cm adalah 5,94%, 8,72%, dan 7,34%. Nilai validasi berdasarkan MAE sebelum dimodelkan adalah 3,02 dan nilai MAE setelah dimodelkan adalah 0,27. Penurunan nilai galat pada suhu 38°C untuk masing-masing jarak 2cm, 4cm, dan 6cm adalah 6,27%, 8,67%, dan 11,03%. Nilai validasi berdasarkan MAE sebelum dilakukan permodelan adalah 3,87 dan nilai MAE setelah dimodelkan adalah 0,57. Berdasarkan data tersebut dapat disimpulkan bahwa estimasi galat sebagai kompensasi hasil pembacaan sensor suhu non-sentuh mampu menurunkan galat hasil pembacaan sensor.References
Y. Zhang, Z. Wang, X. Fu, F. Yan, and T. Kong, “An experimental method for improving temperature measurement accuracy of infrared thermal imager,” Infrared Phys Technol, vol. 102, p. 103020, Nov. 2019, doi: 10.1016/j.infrared.2019.103020.
J.-W. Lin, M.-H. Lu, and Y.-H. Lin, “A Thermal Camera Based Continuous Body Temperature Measurement System,” in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Oct. 2019, pp. 1681–1687. doi: 10.1109/ICCVW.2019.00208.
M. Milic and M. Ljubenovic, “Arduino-Based Non-Contact System for Thermal-Imaging of Electronic Circuits,” in 2018 Zooming Innovation in Consumer Technologies Conference (ZINC), May 2018, pp. 62–67. doi: 10.1109/ZINC.2018.8448944.
L. M. S. Dias, J. F. C. B. Ramalho, T. Silverio, L. Fu, R. A. S. Ferreira, and P. S. Andre, “Smart Optical Sensors for Internet of Things: Integration of Temperature Monitoring and Customized Security Physical Unclonable Functions,” IEEE Access, vol. 10, pp. 24433–24443, 2022, doi: 10.1109/ACCESS.2022.3153051.
S.-H. Lin and C.-C. Lin, “Automatic Login System for Forehead Temperature Measurement,” in 2020 International Symposium on Computer, Consumer and Control (IS3C), Nov. 2020, pp. 154–157. doi: 10.1109/IS3C50286.2020.00047.
S. Donati, “ Thermal Detectors and Thermography ,” Photodetectors, pp. 245–263, 2020, doi: 10.1002/9781119769958.ch8.
T. L. Lam, “Low-Cost Non-Contact PCBs Temperature Monitoring and Control in a Hot Air Reflow Process Based on Multiple Thermocouples Data Fusion,” IEEE Access, vol. 9, pp. 123566–123574, 2021, doi: 10.1109/ACCESS.2020.3036527.
F. Ghassemi, M. S. Hoseinzadeh, and A. Ekhlasi, “Design and Implementation of Wireless Body Temperature Monitor with warning system via SMS,” in 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Dec. 2020, pp. 1–5. doi: 10.1109/ICSPIS51611.2020.9349541.
M.-R. Tofighi and A. Attaluri, “Annular Slot Biomedical Antenna for Combined Microwave Heating and Infrared Thermography of the Tissue,” in 2019 IEEE Radio and Wireless Symposium (RWS), Jan. 2019, pp. 1–3. doi: 10.1109/RWS.2019.8714505.
P. Jagadev and L. I. Giri, “Infrared Thermography based Human Physiological Parameter Monitoring,” in 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP), Jul. 2019, pp. 1–4. doi: 10.1109/ICESIP46348.2019.8938319.
H. Anjum, A. Ul-Haq, and I. Mahmood, “Dynamic modeling and heat flow study of a thermal power plant using openmodelica,” IEEE Access, vol. 8, pp. 178614–178626, 2020, doi: 10.1109/ACCESS.2020.3027640.
D. Prost, F. Issac, and M. Romier, “Imaging electric and magnetic near field of radiating structures by infrared thermography,” in 2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE, Sep. 2019, pp. 311–314. doi: 10.1109/EMCEurope.2019.8872116.
S. Y. Lee and M. Devarajan, “Thermal analysis of multi-chip cool white HPLED with thermal transient tester and thermal imaging camera,” ICP 2012 - 3rd International Conference on Photonics 2012, Proceedings, pp. 85–88, 2012, doi: 10.1109/ICP.2012.6379835.
J. Zhang, X. Zhou, L. Li, T. Hu, and C. Fansheng, “A Combined Stripe Noise Removal and Deblurring Recovering Method for Thermal Infrared Remote Sensing Images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022, doi: 10.1109/TGRS.2022.3196050.
X. Feng, Z. Li, and R. Zhang, “An Infrared Thermal Imaging Approach with Cooling Pre-treatment for Monitoring Cracks inside Metal Plate,” in 2020 Chinese Automation Congress (CAC), Nov. 2020, pp. 2992–2997. doi: 10.1109/CAC51589.2020.9327851.
P. Y. Wang et al., “Dynamic Thermal Analysis of High-Voltage Power Cable Insulation for Cable Dynamic Thermal Rating,” IEEE Access, vol. 7, pp. 56095–56106, 2019, doi: 10.1109/ACCESS.2019.2913704.
B. Cao et al., “Evaluation of Four Kernel-Driven Models in the Thermal Infrared Band,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 8, pp. 5456–5475, Aug. 2019, doi: 10.1109/TGRS.2019.2899600.
Y. Hu, M. P. David, and J. Madalengoitia, “Infrared Radiation Transparent Film Impact on Thermal Measurement,” in 2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), Jun. 2021, pp. 1140–1144. doi: 10.1109/ITherm51669.2021.9503228.
Z.-H. Wang, G.-J. Horng, T.-H. Hsu, C.-C. Chen, and G.-J. Jong, “A Novel Facial Thermal Feature Extraction Method for Non-Contact Healthcare System,” IEEE Access, vol. 8, pp. 86545–86553, 2020, doi: 10.1109/ACCESS.2020.2992908.
F. Aufar, M. A. Murti, and M. H. Barri, “Design of Non-Contact Thermometer Using Thermal Camera For Detecting People With Fever,” in 2021 International Conference on Computer Science and Engineering (IC2SE), Nov. 2021, pp. 1–5. doi: 10.1109/IC2SE52832.2021.9792101.
W. Oiu, B. Zee, B. Lai, J. Vickers, and D. Tien, “Improved Phase Data Acquisition for Thermal Emissions Analysis,” in 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Jul. 2018, pp. 1–4. doi: 10.1109/IPFA.2018.8452169.
A. A. Sarawade and N. N. Charniya, “Infrared Thermography and its Applications: A Review,” in 2018 3rd International Conference on Communication and Electronics Systems (ICCES), Oct. 2018, pp. 280–285. doi: 10.1109/CESYS.2018.8723875.
S. I. Purnama, I. Hikmah, and M. A. Afandi, “Development of Low-Cost Thermal Camera for Examine Human Body Temperature,” in Journal of Physics: Conference Series, 2021, vol. 1951, no. 1. doi: 10.1088/1742-6596/1951/1/012033.
S. I. Purnama, I. Hikmah, M. A. Afandi, and E. S. Mulyani, “OPTIMASI PEMBACAAN SUHU KAMERA TERMAL MENGGUNAKAN REGRESI LINIER,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 1, pp. 127–136, Mar. 2021, doi: 10.30598/barekengvol15iss1pp127-136.
T. Bhowmik, R. Mojumder, I. Banerjee, G. Das, and A. Bhattacharya, “IoT Based Non-Contact Portable Thermal Scanner for COVID Patient Screening,” in 2020 IEEE 17th India Council International Conference, INDICON 2020, Dec. 2020. doi: 10.1109/INDICON49873.2020.9342203.
L. Maurya, P. Mahapatra, and D. Chawla, “Simultaneous Breathing Monitoring of Multiple Persons Using Thermal and Visible Imaging,” IEEE Sens J, vol. 21, no. 24, pp. 28057–28065, Dec. 2021, doi: 10.1109/JSEN.2021.3124615.
F. M. Inochkin et al., “Superresolution Contour Reconstruction Approach to a Linear Thermal Expansion Measurement,” in 2018 25th IEEE International Conference on Image Processing (ICIP), Oct. 2018, pp. 3843–3847. doi: 10.1109/ICIP.2018.8451081.
C. Hessler and M. Abouelenien, “Using Thermal Images and Physiological Features to Model Human Behavior: A Survey,” in 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Apr. 2018, pp. 278–281. doi: 10.1109/MIPR.2018.00064.
H. A. Permana, F. T. Syifa, and M. A. Afandi, “Sistem Monitoring pH dan Kekeruhan Akuarium Menggunakan Metode Regresi Linear,” Journal of Telecommunication, Electronics, and Control Engineering (JTECE), vol. 4, no. 1, pp. 47–55, Jun. 2022, doi: 10.20895/jtece.v4i1.407.
M. A. Afandi, S. Nurandi, and I. K. A. Enriko, “Automated Air Conditioner Controler and Monitoring Based on Internet of Things,” IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), vol. 11, no. 1, p. 83, Apr. 2021, doi: 10.22146/ijeis.64563.
I. Hafidz, D. Adiputra, B. Montolalu, W. A. Prastyabudi, H. Widyantara, and M. A. Afandi, “IoT-Based Logistic Robot for Real-Time Monitoring and Control Patients during COVID-19 Pandemic,” JURNAL NASIONAL TEKNIK ELEKTRO, vol. 9, no. 3, Nov. 2020, doi: 10.25077/jnte.v9n3.810.2020.
Downloads
Published
Issue
Section
License
Pernyataan Lisensi
Artikel yang diterbitkan dalam jurnal Techno.Com dilisensikan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional (CC BY-NC 4.0).
Anda diperbolehkan untuk menyalin, mendistribusikan, menampilkan, dan melakukan karya dari artikel ini serta membuat karya turunan selama Anda memberikan kredit yang sesuai kepada penulis asli dan tidak menggunakan karya ini untuk tujuan komersial. Untuk melihat salinan lisensi ini, kunjungi [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
---
Contoh pengkreditan:
- Penulis: [Nama Penulis]
- Judul Artikel: [Judul Artikel]
- Jurnal: Techno.Com, Vol. [Nomor Volume], No. [Nomor Edisi], Tahun [Tahun Penerbitan]
Jika Anda ingin menggunakan karya ini untuk tujuan komersial, Anda harus mendapatkan izin terlebih dahulu dari penulis atau penerbit.
---