Tuning Database Pada Sistem Penerimaan Mahasiswa Baru Menggunakan Optimasi Query dan Indexing
DOI:
https://doi.org/10.33633/tc.v22i1.7047Keywords:
Tuning, Index, Optimasi Database, SQL QueryAbstract
Dalam pengoperasian database MaraiaDB diperlukan aplikasi berupa server localhost yang memiliki response waktu untuk menjalankan sebuah query agar dapat mendapatkan waktu yang efisiensi. Pada penelitian ini mengukur perfoma query dalam bentuk SELECT pada database MariaDB yang sudah di install pada komputer atau laptop dengan menggunakan aplikasi yang bernama Xammp dengan jumlah record data kurang lebih sebanyak 12.000 data, tapi pada penelitian ini hanya memakai sekitar 5000 data. Data tersebut nantinya akan dilakukan optimasi query dan indexing. Permasalahan yang terjadi adalah lamanya proses pengambilan data yang membutuhkan waktu sehingga membutuhkan suatu cara agar dapat mempercepat proses pengambilan data. Metode optimasi database yang difokuskan pada pengujian ini adalah dengan melakukan perbandingan dari berbagai efektivitas sub query serta penggunaan indexing pada tabel. Pada Query yang diuji adalah fungsi yang bernama LEFT JOIN, WHERE, ON, GROUP BY, ORDER BY dan DML (Data Manipulation Language), yaitu QUERY SELECT yang akan di lakukan pada aplikasi Xammp. Pada penelitian ini hasil yang di harapkan berupa pengambilan data yang akan menjadi lebih cepat atau efisien untuk meningkatkan kinerja pada database setelah melakukan Optimasi SQL Query dan Table Indexing.References
A. Abbas and K. Ahmad, “Query Performance in Database Operation,” PS-FTSM-2020-045, 2020.
Kristina, Wasino, and Tony, “Perbandingan Optimasi Query dengan View dan Indexed View,” J. Ilmu Komput. dan Sist. Informas, pp. 113–117, 2013.
D. Petkovic, “Microsoft SQL Server 2008 , A Beginner ’ s Guide,” no. August, 2008.
R. Pamungkas, “Optimalisasi Query Dalam Basis Data My Sql Menggunakan Index,” Res. Comput. Inf. Syst. Technol. Manag., vol. 1, no. 1, p. 27, 2018, doi: 10.25273/research.v1i1.2453.
S. Mukherjee, “Indexes in Microsoft SQL Server,” SSRN Electron. J., no. March, 2019, doi: 10.2139/ssrn.3415957.
C. Cioloca and M. Georgescu, “Increasing Database Performance using Indexes,” Database Syst. J., vol. 2, no. 2, pp. 13–22, 2011, [Online]. Available: https://ideas.repec.org/a/aes/dbjour/v2y2011i2p13-22.html.
B. J. Liu, L. J. Wu, W. He, X. Y. Han, and L. L. Tang, “Research on Performance Optimization Technology of Complex Equipment Software Database,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1043, no. 2, pp. 0–7, 2021, doi: 10.1088/1757-899X/1043/2/022022.
Ramez Elmasri and Shamkant B. Navathe, Fundamental Of Database Systems Seventh Edition, 7th ed. Pearson, 2016.
T. Connolly and C. Begg, Database Systems A Practical Approach to Design, Implementation, and Management SIXth edition. 2014.
J. Zhang, “Research on Database Application Performance Optimization Method,” 6th Int. Conf. Mach. Mater. Environ. Biotechnol. Comput., no. Mmebc, pp. 2236–2239, 2016, doi: 10.2991/mmebc-16.2016.448.
Samidi, D. Iskandar, M. Fachruroji, W. A. Septyo, and A. K. A, “Database Tuning in Hospital Applications Using Table Indexing and Query Optimization,” J. Pendidik. Tambusai, vol. 6, pp. 1960–1967, 2022.
M. Alam, N. Kumar, and S. B. Singh, “A Study of Various Parameters and Techniques Applicable in Database and,” vol. XV, no. Viii, pp. 71–81, 2021.
D. A. Domokos, D. Pamfil, and M. Grebenisan, “Database optimization techniques applied to a database contain soy and corn based products to ensure a quick search in this database.,” Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic., vol. 69, no. 2, pp. 422–426, 2012.
J. Yu and M. Sarwat, “Two birds, one stone: A fast, yet lightweight, indexing scheme for modern database systems,” Proc. VLDB Endow., vol. 10, no. 4, pp. 385–396, 2016, doi: 10.14778/3025111.3025120.
S. Anuja and C. Malathy, “Big Data Query Optimization -Literature Survey,” pp. 1–9, 2021, doi: https://doi.org/10.21203/rs.3.rs-655386/v1.
Downloads
Published
Issue
Section
License
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/