Identifikasi Pohon Tropis di Daerah Perkotaan Menggunakan Multispectral Drone Imagery
DOI:
https://doi.org/10.33633/tc.v21i4.6778Keywords:
Multispektral, citra drone, identifikasi pohon tropisAbstract
Vegetasi di daerah perkotaan tumbuh diantara gedung dan jalan. Bangunan di sekitar pohon berdampak pada identifikasi tanaman menggunakan citra drone. Paper ini menjelaskan tentang perbandingan kemampuan citra drone pada band cahaya tampak, near infrared, dan red-edge untuk identifikasi pohon tropis di daerah perkotaan. Kami menyusun dataset yang berisi paduan pohon saman (Samanea Saman), cemara (Casuarina equisetifolia), dan pohon-lain. Setiap citra melalui tahapan proses filtering, segmentasi, dan classification. Hasil uji coba menunjukkan bahwa band cahaya tampak dapat mengidentifikasi saman, cemara, dan pohon-lain dibandingkan dengan citra pada band near-infrared dan red-edge.References
P. Dvo?ák, J. Müllerová, T. Bartaloš and J. Br?na, Unmanned aerial vehicles for alien plant species detection and monitoring, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vols. XL-1/W4, pp. 83-90, 2015.
K. Itakura, T. Hata and F. Hosoi, Tree Species Classification Using Leaf and Tree Trunk Images, in GARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020.
K. Jing, W. a. D. L. Fuwei, K. Yu and L. Buying, Research on Tree Classification Algorithm Based on Morphology and Leaf, in 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), 2020.
K. James and K. Bradshaw, Detecting plant species in the field with deep learning and drone technology, Methods in Ecology and Evolution, vol. 11, 2020.
M. Onishi and T. Ise, Explainable identification and mapping of trees using UAV RGB image and deep learning., Scientific Reports 11, 2021.
S. Seager, E. L. Turner, J. Schafer and E. B. Ford, Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants, Astrobiology, vol. 5, no. 3, p. 372, 2005.
E. W. Schwieterman, Surface and Temporal Biosignatures, in Handbook of Exoplanets, Springer Cham, 2018, pp. 3173-3201.
Ü. Niinemets, O. Kull and J. D. Tenhunen, Variability in Leaf Morphology and Chemical Composition as a Function of Canopy Light Environment in Coexisting Deciduous Trees, International Journal of Plant Sciences, vol. 160, no. 5, pp. 837-848, 1999.
H. POORTER and M. BERGKOTTE, Chemical composition of 24 wild species differing in relative growth rate, Plant, Cell & Environment, vol. 15, no. 2, pp. 221-229, 1992.
S. C. Johnson, Hierarchical clustering schemes, Psychometrika , vol. 32, pp. 241-254, 1987.
F. Murtagh and P. Contreras, Algorithms for hierarchical clustering: an overview, WIREs Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 86-97, 2011.
L. Hai-bo, J. An-bo, X. Ling-yun and S. Chun-yan, Edge detection using matched filter, The 27th Chinese Control and Decision Conference, 2015.
C. R. Elevitch, Traditional Trees of Pacific Islands: Their Culture, Environment, and Use, Hawai: Permanent Agriculture Resource, 2006.
M. Sokolova, N. Japkowicz and S. Szpakowicz, Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation, in AI 2006: Advances in Artificial Intelligence, Berlin, Heidelberg, Springer Berlin Heidelberg, 2006, pp. 1015-1021.
Y. Ozaki, W. F. McClure and A. Christy, Near-Infrared Spectroscopy in Food Science and Technology, New Jersey: John Wiley & Sons, 2007.
P. C. Williams and S. G. Stevensen, Near-infrared reflectance analysis: food industry applications, Trends in Food Science & Technology, vol. 1, pp. 44-48, 1990.
M. Luoto, T. Toivonen and R. K. Heikkinen, Prediction of total and rare plant species richness in agricultural landscapes from satellite images and topographic data, Landscape Ecology, vol. 17, pp. 195-217, 2002.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Zainal Abidin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/