Identifikasi Pohon Tropis di Daerah Perkotaan Menggunakan Multispectral Drone Imagery

Authors

  • Zainal Abidin Teknik Informatika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Fatchurrohman Fatchurrohman Teknik Informatika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Okta Qomaruddin Aziz Teknik Informatika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.33633/tc.v21i4.6778

Keywords:

Multispektral, citra drone, identifikasi pohon tropis

Abstract

Vegetasi di daerah perkotaan tumbuh diantara gedung dan jalan. Bangunan di sekitar pohon berdampak pada identifikasi tanaman menggunakan citra drone. Paper ini menjelaskan tentang perbandingan kemampuan citra drone pada band cahaya tampak, near infrared, dan red-edge untuk identifikasi pohon tropis di daerah perkotaan. Kami menyusun dataset yang berisi paduan pohon saman (Samanea Saman), cemara (Casuarina equisetifolia), dan pohon-lain. Setiap citra melalui tahapan proses filtering, segmentasi, dan classification. Hasil uji coba menunjukkan bahwa band cahaya tampak dapat mengidentifikasi saman, cemara, dan pohon-lain dibandingkan dengan citra pada band near-infrared dan red-edge.

References

P. Dvo?ák, J. Müllerová, T. Bartaloš and J. Br?na, Unmanned aerial vehicles for alien plant species detection and monitoring, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vols. XL-1/W4, pp. 83-90, 2015.

K. Itakura, T. Hata and F. Hosoi, Tree Species Classification Using Leaf and Tree Trunk Images, in GARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020.

K. Jing, W. a. D. L. Fuwei, K. Yu and L. Buying, Research on Tree Classification Algorithm Based on Morphology and Leaf, in 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), 2020.

K. James and K. Bradshaw, Detecting plant species in the field with deep learning and drone technology, Methods in Ecology and Evolution, vol. 11, 2020.

M. Onishi and T. Ise, Explainable identification and mapping of trees using UAV RGB image and deep learning., Scientific Reports 11, 2021.

S. Seager, E. L. Turner, J. Schafer and E. B. Ford, Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants, Astrobiology, vol. 5, no. 3, p. 372, 2005.

E. W. Schwieterman, Surface and Temporal Biosignatures, in Handbook of Exoplanets, Springer Cham, 2018, pp. 3173-3201.

Ü. Niinemets, O. Kull and J. D. Tenhunen, Variability in Leaf Morphology and Chemical Composition as a Function of Canopy Light Environment in Coexisting Deciduous Trees, International Journal of Plant Sciences, vol. 160, no. 5, pp. 837-848, 1999.

H. POORTER and M. BERGKOTTE, Chemical composition of 24 wild species differing in relative growth rate, Plant, Cell & Environment, vol. 15, no. 2, pp. 221-229, 1992.

S. C. Johnson, Hierarchical clustering schemes, Psychometrika , vol. 32, pp. 241-254, 1987.

F. Murtagh and P. Contreras, Algorithms for hierarchical clustering: an overview, WIREs Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 86-97, 2011.

L. Hai-bo, J. An-bo, X. Ling-yun and S. Chun-yan, Edge detection using matched filter, The 27th Chinese Control and Decision Conference, 2015.

C. R. Elevitch, Traditional Trees of Pacific Islands: Their Culture, Environment, and Use, Hawai: Permanent Agriculture Resource, 2006.

M. Sokolova, N. Japkowicz and S. Szpakowicz, Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation, in AI 2006: Advances in Artificial Intelligence, Berlin, Heidelberg, Springer Berlin Heidelberg, 2006, pp. 1015-1021.

Y. Ozaki, W. F. McClure and A. Christy, Near-Infrared Spectroscopy in Food Science and Technology, New Jersey: John Wiley & Sons, 2007.

P. C. Williams and S. G. Stevensen, Near-infrared reflectance analysis: food industry applications, Trends in Food Science & Technology, vol. 1, pp. 44-48, 1990.

M. Luoto, T. Toivonen and R. K. Heikkinen, Prediction of total and rare plant species richness in agricultural landscapes from satellite images and topographic data, Landscape Ecology, vol. 17, pp. 195-217, 2002.

Downloads

Published

2022-11-30