Analisis Deteksi Tepi Citra Dengan Quantum Hadamard Edge Detection (QHED)

Authors

  • Lipantri Mashur Gultom Politeknik Negeri Bengkalis
  • Desi Amirullah Politeknik Negeri Bengkalis

DOI:

https://doi.org/10.33633/tc.v21i4.6708

Keywords:

Quantum, Hadamard, Edge Detection

Abstract

Fokus penelitian ini pada eksperimen Quantum Hadamard Edge Detection (QHED) untuk pendeteksian tepi suatu gambar dimana jumlah qubit yang digunakan ternyata sangat mempengaruhi waktu pemrosesan CPU. Penelitian ini mengunakan benchmark dataset gambar yaitu contour detection and image segmentation dari Berkeley Computer Vision Group. Jumlah qubit yang digunakan pada penelitian ini yaitu 2, 4, 6, 8, 10 dan 12 qubit, sedangkan jumlah qubit lebih dari 12 tidak dapat diuji karena keterbatasan memori RAM dari perangkat yang ada dalam penelitian ini. Hasil akhir dari penelitian membuktikan bahwa QHED dapat mendeteksi tepi suatu gambar dimana waktu pemrosesan yang paling cepat pada penggunaan 6 qubit sedangkan hasil proses pendeteksian tepi yang terbaik terletak pada penggunaan 2 qubit.

References

F. Yan and S. E. Venegas-Andraca, “Quantum image processing,” Quantum Image Process., pp. 1–171, 2020, doi: 10.1007/978-981-32-9331-1.

F. Yan, A. M. Iliyasu, and P. Q. Le, “Quantum image processing: a review of advances in its security technologies,” Int. J. Quantum Inf., vol. 15, no. 03, p. 1730001, 2017.

S. Pramanik et al., “Quantum image processing,” Phys. Rev. X, vol. 7, no. 3, pp. 1–171, 2020, doi: 10.1103/PhysRevX.7.031041.

W. S. Gan, “Quantum Image Processing,” in Quantum Acoustical Imaging, Singapore: Springer Singapore, 2022, pp. 83–86.

A. Anand, M. Lyu, P. S. Baweja, and V. Patil, “Quantum image processing,” 2022, [Online]. Available: http://arxiv.org/abs/2203.01831.

A. Geng, A. Moghiseh, C. Redenbach, and K. Schladitz, “A hybrid quantum image edge detector for the NISQ era,” Quantum Mach. Intell., vol. 4, no. 2, pp. 1–19, 2022, doi: 10.1007/s42484-022-00071-3.

Y. Ruan, X. Xue, and Y. Shen, “Quantum Image Processing: Opportunities and Challenges,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/6671613.

J. Su, X. Guo, C. Liu, and L. Li, “A new trend of quantum image representations,” IEEE Access, vol. 8, pp. 214520–214537, 2020.

S. Yuan, S. E. Venegas-Andraca, Y. Wang, Y. Luo, and X. Mao, “Quantum Image Edge Detection Algorithm,” Int. J. Theor. Phys., vol. 58, no. 9, pp. 2823–2833, 2019, doi: 10.1007/s10773-019-04166-9.

G. Cavalieri and D. Maio, “A Quantum Edge Detection Algorithm,” 2020, [Online]. Available: http://arxiv.org/abs/2012.11036.

X. W. Yao et al., “Quantum image processing and its application to edge detection: Theory and experiment,” Phys. Rev. X, vol. 7, no. 3, 2017, doi: 10.1103/PhysRevX.7.031041.

P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 898–916, 2011, doi: 10.1109/TPAMI.2010.161.

S. Pramanik et al., “A Quantum-Classical Hybrid Method for Image Classification and Segmentation,” 2021, [Online]. Available: http://arxiv.org/abs/2109.14431.

J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, 1986, doi: 10.1109/TPAMI.1986.4767851.

F. G. Irwin and others, “An isotropic 3x3 image gradient operator,” Present. Stanford AI Proj., vol. 2014, no. 02, 1968.

Downloads

Published

2022-11-30