Analisis Rekomendasi Produk Berdasarkan Segmentasi Pelanggan Menggunakan Algoritma DBSCAN dan FP-Growth

Authors

  • Siti Monalisa Monalisa UIN Suska Riau
  • Dewi Anjainah Anjainah

DOI:

https://doi.org/10.33633/tc.v21i4.6697

Keywords:

Customer Segmentation, DBSCAN, FP-Growth, Product Recommendation, RFM

Abstract

Supermarket 212 Mart is a retail business based on sharia cooperatives that has implemented strategy to retain customers. But there is still a drawback, which is just seeing based on the amount of money spent regardless of recency and frequency. In addition, in offering products, 212 Mart does not yet have the right reference. This research combines RFM analysis into data mining techniques to provide more product recommendations good. Parameters considered are customer RFM value, customer segment, and product which are often purchased simultaneously within 1 year of member transaction data using an algorithm DBSCAN and FP-Growth. In customer segmentation, obtained 5 clusters and 31 noise data with an Eps value of 0.060, MinPts 3 and an SI value of 0.4222. Association results using 30% minsup and minconf 70% resulted in cluster 1 having 7 rules, cluster 2 having 6 rules, cluster 3 having 10 rules, cluster 4 has 2 rules, and cluster 5 has 6 rules. The rules formed can be used to direct marketing by recommending products to their respective customers clusters. 

References

U. Khairunnisa, "Penerapan algoritma fp-growth untuk penentuan pola pada data transaksi terbak berdasarkan teknik clustering," Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, 2020.

T. A. A. Sandi, M. Raharjo, J. L. Putra and R. Ridwan, "Clustering kesetiaan pelanggan dengan model rfm (recency, frequency, monetary) dan k-means," Journal of Computing and Information System, pp. 14(2), 239–246, 2018.

A. Jaini, "Penerapan algoritma fuzzy c-means dan k-medoids untuk pengelompokan penjualan dan strategi pemasaran produk," Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, 2019.

W. A. Triyanto, "Association rule mining untuk penentuan rekomendasi promosi produk," Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, pp. 5(2), 121–126, 2014.

E. W. X. L. d. C. D. C. Ngai, "Application of data mining techniques in customer relationship management: A literature review and classification," Expert systems with applications, pp. 36(2), 2592–2602, 2009.

F. M. M. R. D. O. N. F. H. B. N. P. d. M. S. Hadi, "Penerapan k-means clustering berdasarkan rfm mofek sebagai pemetaan dan pendukung strategi pengelolaan pelanggan (studi kasus:Pt. herbal penawar alwahidah indonesia pekanbaru)," SITEKIN: Jurnal Sains, Teknologi dan Industri, pp. 15(1), 69–76, 2017.

T. S. S. d. H. R. Hardiani, "Segmentasi nasabah tabungan menggunakan model rfm (recency, frequency, monetary) dan k-means pada lembaga keuangan mikro," in Seminar nasional teknologi informasi dan, 2015.

M. T. d. M. L. Furqon, "Clustering the potential risk of tsunami using density-based spatial clustering of application with noise (dbscan).," Journal of Environmental Engineering and Sustainable Technology, pp. 3(1), 1–8, 2016.

K. C. C. C. C. L. D. P. d. Y. Y. Kelvin, "Customer churn’s analysis in telecomunications company using fp-growth algorithm: Customer churn’s analysis in telecomunications company using fp-growth algorithm," Jurnal Mantik, pp. 4(2), 1285–1290, 2020.

D. Birant, "Data mining using rfm analysis," in IntechOpen, 2011.

I. H. A. d. F. M. Z. Syukra, "Implementation of k-medoids and fp-growth algorithms for grouping and product offering recommendations," Indonesian Journal of Artificial Intelligence and Data Mining, p. 107–115, 2019.

Downloads

Published

2022-11-30