Klasifikasi Topik terhadap Judul Berita Kasus Covid-19 dengan Multilayer Perceptron
DOI:
https://doi.org/10.33633/tc.v21i4.6617Keywords:
Klasifikasi Topik, Covid-19, Multilayer PerceptronAbstract
Peran media massa berpengaruh dalam meningkatkan kesadaran masyarakat terhadap penyebaran Covid-19. Berdasarkan laporan Reuters Institute Digital News Report 2022, media daring cenderung dikonsumsi oleh masyarakat Indonesia sebagai sumber berita dengan persentase 88%. Hal tersebut menunjukkan media daring merupakan tempat penyebaran informasi yang penting. Penelitian ini bertujuan untuk mengklasifikasikan topik yang ada dalam berita terkait kasus Covid-19 dalam media massa Kompas dengan menggunakan multilayer perceptron. Berdasarkan hasil penelitian, berita kasus Covid-19 dapat dikategorikan menjadi empat label, yaitu kebijakan pemerintah, pemberitahuan informasi, internasional, dan masyarakat umum. Tingkat akurasi yang didapat dari pemodelan dengan multilayer perceptron adalah 75%. Kemiripan pada kata-kata dalam data menyebabkan adanya kesalahan dalam membedakan antara satu topik dengan topik lainnya.References
B. A. Santosa, “Peran Media Massa dalam Mencegah Konflik,” J. ASPIKOM, vol. 3, no. 2, pp. 199–214, 2017, [Online]. Available: https://jurnalaspikom.org/index.php/aspikom/article/view/128.
N. Newman, R. Fletcher, C. T. Robertson, K. Eddy, and R. K. Nielsen, “Reuters Institute Digital News Report 2022,” Oxford, 2022. [Online]. Available: https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2022.
J. Hirschberg and C. D. Manning, “Advances in Natural Language Processing,” Science (80-. )., vol. 349, no. 6245, pp. 261–266, 2015, [Online]. Available: https://www.science.org/doi/10.1126/science.aaa8685.
S. Defiyanti, “Integrasi Metode Clustering dan Klasifikasi untuk Data Numerik,” in Conference on Information Technology and Electrical Engineering, 2017, pp. 256–261, [Online]. Available: https://www.researchgate.net/publication/319165131_Integrasi_Metode_Clustering_dan_Klasifikasi_untuk_Data_Numerik.
Musyawir, Susiati, and A. Irmawati, “Strategi Pemilihan Judul Penelitian Kebahasaan bagi Pemula; Mahasiswa Program Studi Pedidikan Bahasa Indonesia dan Sastra Indonesia Universitas Iqra Buru,” J. Pengabdi. Mandiri, vol. 1, no. 3, pp. 517–524, 2022, [Online]. Available: https://bajangjournal.com/index.php/JPM/article/view/1817.
I. Gotama, S. Hariyanto, and H. Wijaya, “Klasifikasi Berita Hoaks Topik Covid-19 dengan Klasifikasi Rocchio dan Cosine Similarity,” J. Algor, vol. 2, no. 1, pp. 84–92, 2020, [Online]. Available: https://jurnal.ubd.ac.id/index.php/algor/article/view/455.
B. K. Palma, D. T. Murdiansyah, and W. Astuti, “Klasifikasi Teks Artikel Berita Hoaks Covid-19 dengan Menggunakan Algotrima K-nearest Neighbor,” eProceedings Eng., vol. 8, no. 5, pp. 10637–10649, 2021, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15672.
F. Prasetya and Ferdiansyah, “Analisis Data Mining Klasifikasi Berita Hoax COVID 19 Menggunakan Algoritma Naive Bayes,” J. Sist. Komput. dan Inform., vol. 4, no. 1, pp. 132–139, 2022, [Online]. Available: http://dx.doi.org/10.30865/json.v4i1.4852.
G. Tika and Adiwijaya, “Klasifikasi Topik Berita Berbahasa Indonesia menggunakan Multilayer Perceptron,” e-Proceeding Eng., vol. 6, no. 1, pp. 2137–2143, 2019, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/8503.
Sudianto, A. D. Sripamuji, and I. R. Ramadhanti, “Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron pada Klasifikasi Topik Berita,” J. Nas. Pendidik. Tek. Inform. JANAPATI, vol. 11, no. 2, 2022, [Online]. Available: https://ejournal.undiksha.ac.id/index.php/janapati/article/view/44151.
R. Siringoringo, “Klasifikasi Data Tidak Seimbang Menggunakan Algoritma Smote dan K-Nearest Neighbor,” J. Inf. Syst. Dev., vol. 3, no. 1, pp. 44–49, 2018, [Online]. Available: https://ejournal-medan.uph.edu/index.php/isd/article/view/177.
V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-Sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002, [Online]. Available: https://arxiv.org/abs/1106.1813.
A. Setiadi, “Penerapan Algoritma Multilayer Perceptron untuk Deteksi Dini Penyakit Diabetes,” Paradigma, vol. 14, no. 1, pp. 46–59, 2012, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/paradigma/article/view/3378.
T. Beysolow II, Applied Natural Language Processing with Python. Berkeley: Apress, 2018.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Faradhiba Salsabila, Afrida Helen, Susi Yuliawati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/