Analisis Sentimen Terhadap Kementrian Perdagangan Pada Sosial Media Twitter Menggunakan Metode Naïve Bayes
DOI:
https://doi.org/10.33633/tc.v21i4.6565Keywords:
Analisis Sentimen, Naïve Bayes, Kementrian Perdagangan Republik Indonesia, Tweet, KlasifikasiAbstract
Penelitian ini untuk mendapatkan opini masyarakat di media sosial twitter terkait tentang Kementrian Perdagangan Republik Indonesia dengan mengimplementasikan algoritma Naïve Bayes untuk melakukan analisis sentimen terhadap opini yang ada. Penelitian ini bertujuan untuk menganalisis opini masyarakat di media sosial terhadap Kementrian Perdagangan Republik Indonesia mengenai kelangkaan minyak goreng dengan menggunakan Naïve Bayes. Data yang digunakan pada penelitian ini adalah postingan tweet yang diberikan masyarakat yang ditujukan dan berkaitan kepada Kementrian Perdagangan Republik Indonesia yang diambil sebanyak 1000 tweet. Metode pengumpulan data dilakukan dengan cara crawling menggunakan acces token api key yang di dapat dari twitter develover. Setelah data didapat maka dilakukan text processing agar mempermudah dalam proses analisis. Hasil analisis pada penelitian ini menggunakan algoritma naïve bayes adalah dengan nilai akurasi sebesar 89,24%. Perbandingan persentase didapatkan 84,02% tanggapan yangdiberikan masyarakat bernilai positif dan 15,98% bernilai negatif.References
E. Juliyanto and F. Rusdi, “Strategi Penyampaian Informasi Melalui Instagram Dengan Tampilan Infografis (di Kementerian Perdagangan RI),” Prologia, vol. 2, no. 2, p. 298, 2019, doi: 10.24912/pr.v2i2.3591.
M. Furqan, S. Mayang Sari, and P. Ilmu Komputer Fakultas Sains dan Teknologi, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia Sentiment Analysis using K-Nearest Neighbor towards the New Normal During the Covid-19 Period in Indonesia,” Techno.COM, vol. 21, no. 1, pp. 52–61, 2022, [Online]. Available: www.tripadvisor.com.
J. Teknologi and I. Jtsi, “Analisis Sentimen Respon Masyarakat Terhadap Kabar Harian Covid-19 Pada Twitter Kementerian Kesehatan,” vol. 2, no. 3, pp. 32–37, 2021.
F. F. Mailo and L. Lazuardi, “Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang Masalah Obesitas di Indonesia,” J. Inf. Syst. Public Heal., vol. 4, no. 1, pp. 28–36, 2019.
G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” Integer J., vol. 2, no. 1, pp. 32–41, 2017.
S. P. Kristanto, J. A. Prasetyo, and E. Pramana, “Naive Bayes Classifier on Twitter Sentiment Analysis BPJS of HEALTH,” Proc. - 2019 2nd Int. Conf. Comput. Informatics Eng. Artif. Intell. Roles Ind. Revolut. 4.0, IC2IE 2019, pp. 24–28, 2019, doi: 10.1109/IC2IE47452.2019.8940900.
K. Suppala and N. Rao, “Sentiment analysis using naïve bayes classifier,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 8, pp. 264–269, 2019, doi: 10.14445/22312803/ijctt-v68i4p141.
A. Goel, J. Gautam, and S. Kumar, “Real time sentiment analysis of tweets using Naive Bayes,” Proc. 2016 2nd Int. Conf. Next Gener. Comput. Technol. NGCT 2016, no. October, pp. 257–261, 2017, doi: 10.1109/NGCT.2016.7877424.
V. Malik and A. Kumar, “Analysis of Twitter Data Using Naive Bayes Algorithm,” Int. J. Recent Innov. Trends Comput. Commun., vol. 6, no. 4, pp. 120–125, 2018, [Online]. Available: http://www.ijritcc.org.
F. S. Mufidah et al., “Analisis Sentimen Masyarakat terhadap Layanan Shopeefood Melalui Media Sosial Twitter dengan Algoritma Naïve Bayes Classifier,” vol. 7, no. 1, pp. 14–25, 2022, doi: 10.33633/joins.v7i1.5883.
wahyu Wibowo and wahyu ela Novianti, “Analisis Sentimen Pengguna Twitter terhadap Program Kartu Prakerja di Tengah,” vol. 11, no. 1, 2022.
D. A. Nugroho et al., “Analisis Sentimen Data Presiden Jokowi Dengan Preprocessing Normalisasi Dan Stemming Menggunakan Metode Naive Bayes Dan SVM,” Semin. Nas. Teknol. Fak. Tek. Univ. Krisnadwipayana, vol. 3, no. 1, pp. 1–11, 2021.
E. Nurhazizah, R. N. Ichsan, and S. Widiyanesti, “Analisis Sentimen Dan Jaringan Sosial Pada Penyebaran Informasi Vaksinasi Di Twitter,” vol. 10, no. 1, pp. 24–35, 2022.
E. Indrayuni, “Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes,” J. Khatulistiwa Inform., vol. 7, no. 1, pp. 29–36, 2019, doi: 10.31294/jki.v7i1.1.
R. Gandhi, “Naive Bayes classifier,” vol. 6, pp. 1–9, 2018.
W. Priatna and R. Purnomo, “Comparation of Support Vector Machine and Artificial Neural Network Algorithm for Lecturer Performance Classification,” Ijarcce, vol. 10, no. 9, 2021, doi: 10.17148/ijarcce.2021.10901.
d n Katresna and f m Dzikry, “Implementasi Algoritma Naive Bayes Pada Klasifikasi Tweet Untuk Mengetahui Tingkat Kemalasan Siswa,” J. Siliwangi Seri Sains Dan …, vol. 6, no. 2, pp. 66–70, 2020, [Online]. Available: http://jurnal.unsil.ac.id/index.php/jssainstek/article/view/2528.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 WOWON Priatna
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pernyataan Lisensi
Artikel yang diterbitkan dalam jurnal Techno.Com dilisensikan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional (CC BY-NC 4.0).
Anda diperbolehkan untuk menyalin, mendistribusikan, menampilkan, dan melakukan karya dari artikel ini serta membuat karya turunan selama Anda memberikan kredit yang sesuai kepada penulis asli dan tidak menggunakan karya ini untuk tujuan komersial. Untuk melihat salinan lisensi ini, kunjungi [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
---
Contoh pengkreditan:
- Penulis: [Nama Penulis]
- Judul Artikel: [Judul Artikel]
- Jurnal: Techno.Com, Vol. [Nomor Volume], No. [Nomor Edisi], Tahun [Tahun Penerbitan]
Jika Anda ingin menggunakan karya ini untuk tujuan komersial, Anda harus mendapatkan izin terlebih dahulu dari penulis atau penerbit.
---