Penyelesaian Masalah Transportasi Menggunakan Metode RCWMCAM dan Metode MODI

Authors

  • Aqilah Kamalia Departemen Matematika Universitas Diponegoro
  • Robertus Soelistyo Utomo Departemen Matematika Universitas Diponegoro

DOI:

https://doi.org/10.33633/tc.v21i3.6535

Keywords:

Masalah Transportasi, Solusi Fisibel Awal, Solusi Optimal, RCWMCAM

Abstract

Masalah transportasi merupakan bagian dari program linier yang berkaitan dengan meminimalkan biaya pendistribusian barang dari sejumlah sumber ke sejumlah tujuan dengan keterbatasaan persediaan dan permintaan. Penyelesaian masalah transportasi disebut dengan solusi fisibel awal dan solusi optimal. Solusi fisibel awal yang diperoleh akan berpengaruh terhadap solusi optimal sehingga penting untuk menentukan metode yang dipakai dalam menentukan solusi fisibel awal. Metode RCWMCAM merupakan metode yang digunakan untuk mendapatkan solusi fisibel awal dengan mempertimbangkan perhitungan baris dan kolom baik biaya penalti dan biaya minimum. Metode MODI merupakan metode yang digunakan untuk menentukan solusi optimal masalah transportasi. Artikel ini membahas tentang penyelesaian masalah trasnportasi menggunakan Metode RCWMCAM dan Metode MODI. Pengaplikasian Metode RCWMCAM pada artikel ini memperoleh solusi fisibel awal yang sama dengan solusi optimal sehingga solusi fisibel awal yang dipeorleh dikatakan telah optimal.

References

Z. A. M. S. Juman and N. G. S. A. Nawarathne, “An efficient alternative approach to solve a transportation problem,” Ceylon J. Sci., vol. 48, no. 1, pp. 19–29, Mar. 2019, doi: 10.4038/cjs.v48i1.7584.

P. R. Murthy, Operations Research (Second Edition). 2007.

A. R. Septiana, L. Ratnasari, and Solikhin, “Metode ASM Pada Masalah Transportasi Seimbang,” Matematika, pp. 71–78, 2017.

M. M. Ahmed, A. R. Khan, F. Ahmed, and M. S. Uddin, “Incessant Allocation Method for Solving Transportation Problems,” Am. J. Oper. Res., vol. 06, no. 03, pp. 236–244, 2016, doi: 10.4236/ajor.2016.63024.

Z. A. M. S. Juman and M. A. Hoque, “An efficient heuristic to obtain a better initial feasible solution to the transportation problem,” Appl. Soft Comput. J., vol. 34, pp. 813–826, Jun. 2015, doi: 10.1016/j.asoc.2015.05.009.

B. Amaliah, C. Fatichah, and E. Suryani, “A new heuristic method of finding the initial basic feasible solution to solve the transportation problem,” J. King Saud Univ. - Comput. Inf. Sci., 2020, doi: 10.1016/j.jksuci.2020.07.007.

K. Karagul and Y. Sahin, “A novel approximation method to obtain initial basic feasible solution of transportation problem,” J. King Saud Univ. - Eng. Sci., vol. 32, no. 3, pp. 211–218, Mar. 2020, doi: 10.1016/j.jksues.2019.03.003.

M. Mathirajan, S. Reddy, and M. V. Rani, “An experimental study of newly proposed initial basic feasible solution methods for a transportation problem,” OPSEARCH, 2021, doi: 10.1007/s12597-021-00533-5.

H. A. Taha, Operations Research An Introduction, 10th ed. Pearson Education, 2017.

S. Sasikala, S. Akiri, and P. Subbara, “Solution of Transportation Problem with South-East Corner Method, North-East Corner Method and Comparison with Existing Method,” OALib, vol. 06, no. 04, pp. 1–12, 2019, doi: 10.4236/oalib.1105377.

A. Rahman Khan, A. Vilcu, N. Sultana, and S. S. Ahmed, “Determination of Initial Basic Feasible Solution of A Transportation Problem: A TOCM-SUM Approach,” 2015

F. Xie, M. M. Butt, Z. Li, and L. Zhu, “An upper bound on the minimal total cost of the transportation problem with varying demands and supplies,” Omega (United Kingdom), vol. 68, pp. 105–118, Apr. 2017, doi: 10.1016/j.omega.2016.06.007.

N. Seethalakshmy, A., Srinivasan, “A Direct Method to Obtain an Optimal Solution in the Transportation Problem,” Int. J. Adv. Res., vol. 4, no. 10, 2016.

M. Sathyavathy and M. Shalini, “Solving transportation problem with four different proposed mean method and comparison with existing methods for optimum solution,” J. Phys. Conf. Ser., vol. 1362, no. 1, 2019, doi: 10.1088/1742-6596/1362/1/012088

M. S. Uddin, C. Kibria, and A. R. Khan, “Improved Least Cost Method to Obtain a Better IBFS to the Transportation Problem,” J. Appl. Math. Bioinforma., vol. 6, no. 1, 2016, [Online]. Available: https://www.researchgate.net/publication/306179689

Downloads

Published

2022-08-23