Pemanfaatan Machine Learning untuk Pengelompokan dan Prediksi Target Tambah Daya Listrik Pelanggan Prabayar (Studi Kasus : PT PLN ULP Watang Sawitto)
DOI:
https://doi.org/10.33633/tc.v21i3.6476Keywords:
Tambah daya, K-means, Gradient Boosting, Artificial Neural NetworkAbstract
Perkembangan teknologi sistem informasi dan ilmu pengetahuan khususnya dalam bidang pemasaran membuat para pelaku usaha berupaya untuk meningkatkan competitive advantage mereka dengan mengerahkan sumber daya yang dimiliki oleh perusahaan. Perusahaan dituntut untuk berinovasi dalam mengelola perusahaannya agar dapat bertahan dalam dunia persaingan. Kemampuan untuk memprediksi pelanggan prabayar yang berpotensi tambah daya listrik merupakan salah satu strategi pendukung untuk keberhasilan program pemasaran tambah daya pelanggan berdasarkan karakteristik konsumsi listriknya. Berdasarkan hal tersebut, penelitian ini mengajukan metode prediksi pelanggan prabayar dengan memanfaatkan algoritma pengelompokan (Clustering) dan klasifikasi. Data yang diolah adalah data pelanggan prabayar tarif rumah tangga yang memiliki fitur variabel daya listrik pelanggan (VA), frekuensi beli token listrik, total pemakaian kWh, total rupiah pembelian token, selisih daya VA pelanggan, jam nyala, periode hari pembelian token listrik, dan riwayat tambah daya listrik pelanggan. Pengelompokan dilakukan dengan menerapkan algoritma K-means. Dari hasil tersebut, model prediksi dibangun sesuai target setiap klaster dengan memanfaatkan dua metode, Gradient Boosting dan Artificial Neural Network. Evaluasi prediksi model terbaik dilakukan dengan menerapkan tiga skenario proporsi data latih dan data uji, yang selanjutnya diukur menggunakan matrik akurasi dan Cohen Kappa. Hasil eksperimen menghasilkan empat klaster berdasarkan karakteristik konsumsi listriknya. Gradient Boosting memberikan hasil yang terbaik untuk semua klaster, untuk klaster 1 menghasilkan nilai AUC 0.784, klaster 2 menghasilkan nilai AUC 0.941, klaster 3 menghasilkan nilai 0.884 dan klaster 4 menghasilkan nilai AUC 0.903.References
O. Motlagh, A. Berry and L. O'Neil, "Clustering of residential electricity customers using load time series," Elsevier BV, vol. 237, pp. 11-24, 2019.
D. R. Thomasa, S. Agrawalb, S. Harishc, A. Mahajand and J. Urpelainene, "Understanding segmentation in rural electricity markets: Evidence from India," Energy Economics, vol. 87, p. 104697, 2020.
H. Abu-Bakar, L. Williams and S. H. Hallett, "An empirical water consumer segmentation and the characterisation of consumption patterns underpinning demand peaks," Elsevier, vol. 174, p. 105792, 2021.
A. Al-Wakeel, J. Wu and N. Jenkins, "k-means based load estimation of domestic smart meter measurements," Elsevier BV, vol. 194, pp. 333-342, 2017.
F. Wang, X. Lu, X. Chang, X. Cao, S. Yan, K. Li, N. Duic, M. Shafie-khah and J. P. Catalao, "Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data," Energy, vol. 238, p. 121728, 2022.
X. Kong, X. Zhao, C. Liu, Q. Li, D. Dong and Y. Li, "Electricity theft detection in low-voltage stations based on similarity measure and DT-KSVM," International Journal of Electrical Power and Energy Systems, vol. 125, p. 106544, 2021.
R. Razavia, A. Gharipourb, M. Fleuryc and I. J. Akpan, "A practical feature-engineering framework for electricity theft detection in smart grids," Applied Energy, vol. 238, p. 481–494, 2019.
D. Jaiswal, V. Kaushal, P. K. Singh and A. Biswas, "Green market segmentation and consumer profiling: a cluster approach to an emerging consumer market," Emerald Group Publishing Ltd, vol. 28, no. 3, pp. 792-812, 2021.
S. Hussain, M. W. Mustafa, T. A. Jumani, S. K. Baloch, H. Alotaibi, I. Khan and A. Khan, "A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection," Energy Reports, vol. 7, p. 4425–4436, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Agus Budi Raharjo, Rizqa Afthoni, Diana Purwitasari

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/