PENGENALAN MOTIF BATIK MENGGUNAKAN DETEKSI TEPI CANNY DAN K-NEAREST NEIGHBOR
DOI:
https://doi.org/10.33633/tc.v13i4.607Abstract
Salah satu budaya ciri khas Indonesia yang telah dikenal dunia adalah batik. Penelitian ini bertujuan untuk mengenali 6 jenis motif batik pada buku karangan H.Santosa Doellah yang berjudul “Batik: Pengaruh Zaman dan Lingkunganâ€. Proses klasifikasi akan melalui 3 tahap yaitu preprosesing, feature extraction dan klasifikasi. Preproses mengubah citra warna batik menjadi citra grayscale. Pada tahap feature extraction citra grayscale ditingkatkan kontrasnya dengan histogram equalization dan kemudian menggunakan deteksi tepi Canny untuk memisahkan motif batik dengan backgroundnya dan untuk mendapatkan pola dari motif batik tersebut. Hasil ekstraksi kemudian dikelompokkan dan diberi label sesuai motifnya masing-masing dan kemudian diklasifikasikan menggunakan k-¬Nearest Neighbor menggunakan pencarian jarak Manhattan. Hasil uji coba diperoleh akurasi tertinggi mencapai 100% pada penggunaan data¬ testing sama dengan data training (dataset sebanyak 300 image). Pada penggunaan data training yang berbeda dengan data testing diperoleh akurasi tertinggi 66,67%. Kedua akurasi tersebut diperoleh dengan menggunakan lower threshold = 0.010 dan upper threshold = 0.115 dan menggunakan k=1. Kata kunci : Batik, Edge Detection, Canny, k-Nearest Neighbor, Manhattan distanceDownloads
Published
Issue
Section
License
Copyright (c) 2024 Johanes Widagdho Yodha, Achmad Wahid Kurniawan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/