Skema Lokalisasi Node pada Jaringan Sensor Nirkabel Berbasis Algoritma Hibrid Bat-PSO
DOI:
https://doi.org/10.33633/tc.v21i2.5892Keywords:
jaringan sensor nirkabel, algoritma Bat, algoritma PSO, lokalisasi nodeAbstract
Jaringan sensor nirkabel terdiri dari ratusan hingga ribuan nodes. Metode konvensional yang digunakan untuk mengetahui posisi node sensor yang tersebar pada lokasi pengamatan adalah pemasangan GPS pada setiap node. Namun, hal ini sangat tidak efektif dan membutuhkan biaya yang besar. Oleh karena itu dibutuhkan suatu metode lokalisasi yang akurat untuk dapat mengestimasi posisi dari setiap node sensor. Salah satu metode yang dapat digunakan adalah menggunakan algoritma metaheuristik. Pada penelitian ini, diusulkan sebuah algoritma metaheuristik yang menggabungkan keunggulan dari algoritma Bat dan algoritma particle swarm optimization (PSO) untuk menyelesaikan permasalahan lokalisasi pada jaringan sensor nirkabel. Berdasarkan hasil penelitian, algoritma hibrid Bat-PSO mampu digunakan untuk mengestimasi seluruh posisi node dalam berbagai variasi kepadatan node. Algoritma hibrid Bat-PSO juga dapat mengestimasi posisi node dengan lebih akurat jika dibandingkan dengan algoritma orisinil Bat.References
A. Paul and T. Sato, “Localization in Wireless Sensor Networks: A Survey on Algorithms, Measurement Techniques, Applications and Challenges,” Journal Sensor Actuator Networks, vol. 6, no. 4, p. 24, 2017, doi: 10.3390/jsan6040024.
M. Mihoubi, A. Rahmoun, P. Lorenz, and N. Lasla, “An effective Bat algorithm for node localization in distributed wireless sensor network,” Secur. Priv., vol. 1, no. 1, p. e7, 2018, doi: 10.1002/spy2.7.
T.-S. P. Pan, Jeng-Shyang Thi-Kien Dao, “An Improvement of Flower Pollination Algorithm in Multi-Objective Optimization,” J. Inf. Hiding Multimed. Signal Process., vol. 8, no. 2, pp. 486–499, 2017.
X. Zhang, C. Tepedelenlioglu, M. Banavar, and A. Spanias, Node Localization in Wireless Sensor Networks. Morgan & Claypool Publishers, 2017.
A. Pratiarso, A. S. Putra, P. Kristalina, A. Sudarsono, M. Yuliana, and I. G. P. Astawa, “Skema Lokalisasi Posisi Node Terdistribusi pada Lingkungan Free Space Path Loss,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 6, no. 3, pp. 352–358, 2017, doi: 10.22146/jnteti.v6i3.338.
X. S. Yang, S. Deb, Y. X. Zhao, S. Fong, and X. He, “Swarm intelligence: past, present and future,” Soft Comput., vol. 22, no. 18, pp. 5923–5933, 2018, doi: 10.1007/s00500-017-2810-5.
S. Sendra, L. Parra, J. Lloret, and S. Khan, “Systems and Algorithms for Wireless Sensor Networks Based on Animal and Natural Behavior,” vol. 2015, no. iv, 2015, doi: 10.1155/2015/625972.
P. SrideviPonmalar, V. J. S. Kumar, and R. Harikrishnan, “Hybrid Firefly Variants Algorithm for Localization Optimization in WSN,” Int. J. Comput. Intell. Syst., vol. 10, no. 1, p. 1263, 2017, doi: 10.2991/ijcis.10.1.85.
S. Arora and S. Singh, “Node Localization in Wireless Sensor Networks Using Butterfly Optimization Algorithm,” Arab. J. Sci. Eng., vol. 42, no. 8, pp. 3325–3335, 2017, doi: 10.1007/s13369-017-2471-9.
D. Li and X. Bin Wen, “An Improved PSO Algorithm for Distributed Localization in Wireless Sensor Networks,” Int. J. Distrib. Sens. Networks, vol. 2015, 2015, doi: 10.1155/2015/970272.
H. A. Shehadeh, I. Ahmedy, and M. Y. I. Idris, “Sperm Swarm Optimization Algorithm for Optimizing Wireless Sensor Network Challenges,” no. May, pp. 53–59, 2018, doi: 10.1145/3193092.3193100.
M. Al Shayokh and S. Y. Shin, “Bio Inspired Distributed WSN Localization Based on Chicken Swarm Optimization,” Wirel. Pers. Commun., vol. 97, no. 4, pp. 5691–5706, 2017, doi: 10.1007/s11277-017-4803-1.
I. Strumberger, M. Minovic, M. Tuba, and N. Bacanin, “Performance of Elephant Herding Optimization and Tree Growth Algorithm Adapted for Node Localization in Wireless Sensor Networks,” Sensors (Basel)., vol. 19, no. 11, pp. 1–30, 2019, doi: 10.3390/s19112515.
X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature inspired cooperative strategies for optimization (NISCO 2010), Springer, 2010, pp. 65–74.
J. Cheng and L. Xia, “An effective cuckoo search algorithm for node localization in wireless sensor network,” Sensors (Switzerland), vol. 16, no. 9, 2016, doi: 10.3390/s16091390.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Nifty Fath

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/