PERBANDINGAN PENGGUNAAN DETEKSI TEPI DENGAN METODE LAPLACE, SOBEL DAN PREWIT DAN CANNY PADA PENGENALAN POLA
DOI:
https://doi.org/10.33633/tc.v13i3.570Abstract
Pengenalan pola merupakan salah satu cabang dari kecerdasan buatan. Dalam pengenalan pola terdapat beberapa langkah yang dilalui. Langkah-langkah yang dilewati diantara preprosesing, ekstraksi fitur dan terakhir klasifikasi. Preprosesing merupakan proses membedakan gambar dengan backgroundnya. Pada tahap preprosesing sebagian besar penelitian mengubah citra Red Green Blue menjadi citra grayscale. Pada tahap ekstraksi fitur, terdapat banyak metode untuk diterapkan, diantaranya deteksi tepi dengan metode Laplace, Sobel & Prewit dan Canny. Dalam berbagai penelitian yang telah dilakukan, penggunaan deteksi tepi Canny untuk segmentasi atau ekstraksi fitur memperoleh hasil yang lebih akurat dibandingkan dengan deteksi tepi lainnya. Setelah dilakukan ekstraksi fitur, tahap berikutnya adalah mengklasifikasikan data. Banyak pula metode untuk mengklasifikasikan sebuah data, diantaranya yang paling sederhana adalah dengan menggunakan metode k-Nearest Neighbor yang mana metode tersebut memiliki keunggulan terhadap data yang memiliki banyak noise serta efektif terhadap data yang berukuran sangat besar. Sedangkan untuk melakukan pengukuran jarak, digunakan Manhattan Distance, karena dalam beberapa penelitian, penggunaan Manhattan Distance memiliki keakurasian yang lebih tinggi dibandingkan dengan Euclidean Distance. Kata Kunci : pengenalan pola, deteksi tepi, Laplace, Sobel & Prewit, Canny, k-Nearest Neighbour, Manhattan DistanceDownloads
Published
Issue
Section
License
Copyright (c) 2014 Johanes Widagdho Yodha, Achmad Wahid Kurniawan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms
All articles published in Techno.COM Journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This means:
1. Attribution
Readers and users are free to:
-
Share – Copy and redistribute the material in any medium or format.
-
Adapt – Remix, transform, and build upon the material.
As long as proper credit is given to the original work by citing the author(s) and the journal.
2. Non-Commercial Use
-
The material cannot be used for commercial purposes.
-
Commercial use includes selling the content, using it in commercial advertising, or integrating it into products/services for profit.
3. Rights of Authors
-
Authors retain copyright and grant Techno.COM Journal the right to publish the article.
-
Authors can distribute their work (e.g., in institutional repositories or personal websites) with proper acknowledgment of the journal.
4. No Additional Restrictions
-
The journal cannot apply legal terms or technological measures that restrict others from using the material in ways allowed by the license.
5. Disclaimer
-
The journal is not responsible for how the published content is used by third parties.
-
The opinions expressed in the articles are solely those of the authors.
For more details, visit the Creative Commons License Page:
? https://creativecommons.org/licenses/by-nc/4.0/